Home
Class 12
MATHS
Solve cot theta = sin 2 theta by subst...

Solve ` cot theta = sin 2 theta ` by substituting ` sin 2 theta =( 2 tan theta )/( 1+tan^(2) theta )` and again by substituting ` sin 2 theta = 2 sin theta * cos theta ` and check whether the two answer are same or not .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot \theta = \sin 2\theta \) using two different substitutions, we will follow these steps: ### Step 1: Using the substitution \( \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \) 1. Start with the equation: \[ \cot \theta = \sin 2\theta \] Substitute \( \sin 2\theta \): \[ \cot \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \] 2. Rewrite \( \cot \theta \) in terms of \( \tan \theta \): \[ \frac{1}{\tan \theta} = \frac{2 \tan \theta}{1 + \tan^2 \theta} \] 3. Cross-multiply to eliminate the fractions: \[ 1 + \tan^2 \theta = 2 \tan^2 \theta \] 4. Rearranging gives: \[ 1 = 2 \tan^2 \theta - \tan^2 \theta \] \[ 1 = \tan^2 \theta \] 5. Take the square root of both sides: \[ \tan \theta = \pm 1 \] 6. The general solutions for \( \tan \theta = 1 \) and \( \tan \theta = -1 \) are: \[ \theta = n\pi + \frac{\pi}{4} \quad \text{and} \quad \theta = n\pi - \frac{\pi}{4} \] where \( n \) is any integer. ### Step 2: Using the substitution \( \sin 2\theta = 2 \sin \theta \cos \theta \) 1. Start with the equation: \[ \cot \theta = \sin 2\theta \] Substitute \( \sin 2\theta \): \[ \cot \theta = 2 \sin \theta \cos \theta \] 2. Rewrite \( \cot \theta \) in terms of \( \sin \theta \) and \( \cos \theta \): \[ \frac{\cos \theta}{\sin \theta} = 2 \sin \theta \cos \theta \] 3. Cross-multiply to eliminate the fractions: \[ \cos \theta = 2 \sin^2 \theta \cos \theta \] 4. If \( \cos \theta \neq 0 \), we can divide both sides by \( \cos \theta \): \[ 1 = 2 \sin^2 \theta \] 5. Rearranging gives: \[ \sin^2 \theta = \frac{1}{2} \] 6. Take the square root of both sides: \[ \sin \theta = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] 7. The general solutions for \( \sin \theta = \frac{\sqrt{2}}{2} \) and \( \sin \theta = -\frac{\sqrt{2}}{2} \) are: \[ \theta = n\pi + \frac{\pi}{4} \quad \text{and} \quad \theta = n\pi - \frac{\pi}{4} \] where \( n \) is any integer. ### Conclusion Both methods yield the same general solutions: - From the first substitution: \( \theta = n\pi + \frac{\pi}{4} \) and \( \theta = n\pi - \frac{\pi}{4} \) - From the second substitution: \( \theta = n\pi + \frac{\pi}{4} \) and \( \theta = n\pi - \frac{\pi}{4} \) Thus, the solutions are consistent.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

Solve 3tan^(2) theta-2 sin theta=0 .

Prove that (2 sin theta - sin 2theta)/(2 sin theta + sin 2theta) = tan^2\ theta/2

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .

Solve sin 6 theta=sin 4 theta-sin 2 theta .

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)