Home
Class 12
MATHS
Solve : sin^(10)x+cos^(10)x=29/16cos^4 2...

Solve : `sin^(10)x+cos^(10)x=29/16cos^4 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{10} x + \cos^{10} x = \frac{29}{16} \cos^4 2x \), we can follow these steps: ### Step 1: Rewrite the Equation We start by rewriting the left-hand side using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^{10} x + \cos^{10} x = (\sin^2 x)^5 + (\cos^2 x)^5 \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then \( a + b = 1 \), and we can express the left-hand side as: \[ a^5 + b^5 \] ### Step 2: Use the Identity for Sums of Powers Using the identity \( a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4) \): \[ a^5 + b^5 = 1 \cdot (a^4 - a^3b + a^2b^2 - ab^3 + b^4) = a^4 - a^3b + a^2b^2 - ab^3 + b^4 \] ### Step 3: Express \( \cos^4 2x \) Next, we express \( \cos^4 2x \) in terms of \( \sin^2 x \) and \( \cos^2 x \): \[ \cos 2x = \cos^2 x - \sin^2 x = b - a \] Thus, \[ \cos^4 2x = (b - a)^4 \] ### Step 4: Substitute and Rearrange Now we substitute back into the original equation: \[ a^5 + b^5 = \frac{29}{16} (b - a)^4 \] This gives us: \[ a^5 + b^5 = \frac{29}{16} ((b - a)^4) \] ### Step 5: Let \( t = \cos 2x \) Let \( t = \cos 2x \). Then we can express \( a \) and \( b \) in terms of \( t \): \[ a = \frac{1 - t}{2}, \quad b = \frac{1 + t}{2} \] Substituting these into the equation gives us: \[ \left(\frac{1 - t}{2}\right)^5 + \left(\frac{1 + t}{2}\right)^5 = \frac{29}{16} t^4 \] ### Step 6: Simplify the Equation Now we simplify the left-hand side: \[ \frac{(1 - t)^5 + (1 + t)^5}{32} = \frac{29}{16} t^4 \] Multiplying through by 32 gives: \[ (1 - t)^5 + (1 + t)^5 = 58 t^4 \] ### Step 7: Expand Using Binomial Theorem Using the binomial theorem: \[ (1 - t)^5 = 1 - 5t + 10t^2 - 10t^3 + 5t^4 - t^5 \] \[ (1 + t)^5 = 1 + 5t + 10t^2 + 10t^3 + 5t^4 + t^5 \] Adding these: \[ 2 + 20t^2 + 10t^4 = 58t^4 \] This simplifies to: \[ 2 + 20t^2 - 48t^4 = 0 \] ### Step 8: Rearranging into Standard Form Rearranging gives us: \[ 48t^4 - 20t^2 - 2 = 0 \] ### Step 9: Let \( u = t^2 \) Let \( u = t^2 \): \[ 48u^2 - 20u - 2 = 0 \] ### Step 10: Solve the Quadratic Equation Using the quadratic formula: \[ u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{20 \pm \sqrt{(-20)^2 - 4 \cdot 48 \cdot (-2)}}{2 \cdot 48} \] Calculating the discriminant: \[ 400 + 384 = 784 \quad \Rightarrow \quad \sqrt{784} = 28 \] Thus: \[ u = \frac{20 \pm 28}{96} \] Calculating the two possible values for \( u \): 1. \( u = \frac{48}{96} = \frac{1}{2} \) 2. \( u = \frac{-8}{96} \) (not valid since \( u \) cannot be negative) ### Step 11: Find \( t \) Since \( u = t^2 \), we have: \[ t^2 = \frac{1}{2} \quad \Rightarrow \quad t = \pm \frac{1}{\sqrt{2}} \] ### Step 12: Solve for \( x \) Recall that \( t = \cos 2x \): \[ \cos 2x = \frac{1}{\sqrt{2}} \quad \text{or} \quad \cos 2x = -\frac{1}{\sqrt{2}} \] This gives: 1. \( 2x = \frac{\pi}{4} + 2n\pi \) or \( 2x = -\frac{\pi}{4} + 2n\pi \) 2. \( 2x = \frac{3\pi}{4} + 2n\pi \) or \( 2x = -\frac{3\pi}{4} + 2n\pi \) Dividing by 2: \[ x = \frac{\pi}{8} + n\pi \quad \text{or} \quad x = \frac{3\pi}{8} + n\pi \] ### Final Solution Thus, the solutions for \( x \) are: \[ x = n\pi + \frac{\pi}{8} \quad \text{and} \quad x = n\pi + \frac{3\pi}{8}, \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve sin^(5)x=1+cos^(4)3x

Solve 2 sin^(3) x=cos x .

Solve sin 2x=4 cos x .

Solve 4 cos^(2)x+6 sin^(2)x=5 .

Solve for x : sin(x+10^(@))=1/2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

Solve: cos{2\ sin^(-1)(-x)}=0