Home
Class 12
MATHS
Solve |sqrt(3) cos x - sin x |ge 2 for ...

Solve ` |sqrt(3) cos x - sin x |ge 2` for ` x in [0,4pi]` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \) in the interval \([0, 4\pi]\), we follow these steps: ### Step 1: Remove the absolute value We start by rewriting the absolute value inequality: \[ \sqrt{3} \cos x - \sin x \geq 2 \quad \text{or} \quad \sqrt{3} \cos x - \sin x \leq -2 \] ### Step 2: Solve the first inequality For the first case: \[ \sqrt{3} \cos x - \sin x \geq 2 \] Rearranging gives: \[ \sqrt{3} \cos x - 2 \geq \sin x \] This can be rewritten as: \[ \sqrt{3} \cos x - \sin x \geq 2 \] ### Step 3: Solve the second inequality For the second case: \[ \sqrt{3} \cos x - \sin x \leq -2 \] Rearranging gives: \[ \sqrt{3} \cos x + 2 \leq \sin x \] This can be rewritten as: \[ \sqrt{3} \cos x + 2 \leq \sin x \] ### Step 4: Convert to trigonometric form We can express \(\sqrt{3} \cos x - \sin x\) in the form \(R \cos(x + \alpha)\). Here, we identify: - \(R = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = 2\) - \(\tan \alpha = \frac{-1}{\sqrt{3}} \Rightarrow \alpha = -\frac{\pi}{6}\) Thus, we can rewrite: \[ \sqrt{3} \cos x - \sin x = 2 \cos\left(x + \frac{\pi}{6}\right) \] ### Step 5: Set up the inequalities Now we have: \[ 2 \cos\left(x + \frac{\pi}{6}\right) \geq 2 \quad \text{or} \quad 2 \cos\left(x + \frac{\pi}{6}\right) \leq -2 \] Dividing by 2 gives: \[ \cos\left(x + \frac{\pi}{6}\right) \geq 1 \quad \text{or} \quad \cos\left(x + \frac{\pi}{6}\right) \leq -1 \] ### Step 6: Solve the inequalities 1. For \(\cos\left(x + \frac{\pi}{6}\right) = 1\): \[ x + \frac{\pi}{6} = 2k\pi \Rightarrow x = 2k\pi - \frac{\pi}{6} \] For \(k = 0\), \(x = -\frac{\pi}{6}\) (not in the interval), for \(k = 1\), \(x = \frac{11\pi}{6}\). 2. For \(\cos\left(x + \frac{\pi}{6}\right) = -1\): \[ x + \frac{\pi}{6} = (2k + 1)\pi \Rightarrow x = (2k + 1)\pi - \frac{\pi}{6} \] For \(k = 0\), \(x = \frac{5\pi}{6}\), for \(k = 1\), \(x = \frac{17\pi}{6}\), for \(k = 2\), \(x = \frac{23\pi}{6}\). ### Step 7: Collect solutions The solutions in the interval \([0, 4\pi]\) are: \[ x = \frac{5\pi}{6}, \frac{11\pi}{6}, \frac{17\pi}{6}, \frac{23\pi}{6} \] ### Final Answer Thus, the solutions to the inequality \( |\sqrt{3} \cos x - \sin x| \geq 2 \) for \( x \in [0, 4\pi] \) are: \[ x = \frac{5\pi}{6}, \frac{11\pi}{6}, \frac{17\pi}{6}, \frac{23\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve sin x + sqrt(3) cos x = sqrt(2)

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

Solve the equation sqrt3cos x + sin x = sqrt2 .

Solve the equation sqrt3cos x + sin x = sqrt2 .

solve sqrt(x+2) ge x

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is

Solve sin 2x=4 cos x .

Solve x + sqrt(x ) ge sqrt( x )-3