Home
Class 12
MATHS
Solve tan^(3) x+3 gt 3tan x+tan^(2) x....

Solve `tan^(3) x+3 gt 3tan x+tan^(2) x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan^3 x + 3 > 3 \tan x + \tan^2 x \), we will follow these steps: ### Step 1: Rearrange the Inequality First, we rearrange the inequality to bring all terms to one side: \[ \tan^3 x + 3 - 3 \tan x - \tan^2 x > 0 \] This simplifies to: \[ \tan^3 x - \tan^2 x - 3 \tan x + 3 > 0 \] ### Step 2: Substitute \( t = \tan x \) Let \( t = \tan x \). The inequality now becomes: \[ t^3 - t^2 - 3t + 3 > 0 \] ### Step 3: Factor the Polynomial Next, we need to factor the polynomial \( t^3 - t^2 - 3t + 3 \). We can use the Rational Root Theorem to find possible rational roots. Testing \( t = 1 \): \[ 1^3 - 1^2 - 3(1) + 3 = 1 - 1 - 3 + 3 = 0 \] So, \( t = 1 \) is a root. We can factor \( t - 1 \) out of the polynomial. Using synthetic division or polynomial long division, we divide \( t^3 - t^2 - 3t + 3 \) by \( t - 1 \): \[ t^3 - t^2 - 3t + 3 = (t - 1)(t^2 + 0t - 3) \] Thus, we have: \[ t^3 - t^2 - 3t + 3 = (t - 1)(t^2 - 3) \] ### Step 4: Set the Factors Greater Than Zero Now we need to solve: \[ (t - 1)(t^2 - 3) > 0 \] We can find the roots of \( t^2 - 3 = 0 \): \[ t^2 = 3 \implies t = \sqrt{3} \quad \text{or} \quad t = -\sqrt{3} \] Thus, the critical points are \( t = 1, \sqrt{3}, -\sqrt{3} \). ### Step 5: Test Intervals We will test the intervals determined by these critical points: \( (-\infty, -\sqrt{3}), (-\sqrt{3}, 1), (1, \sqrt{3}), (\sqrt{3}, \infty) \). 1. **Interval \( (-\infty, -\sqrt{3}) \)**: Choose \( t = -2 \) \[ (-2 - 1)(-2^2 - 3) = (-3)(4 - 3) = -3 < 0 \] 2. **Interval \( (-\sqrt{3}, 1) \)**: Choose \( t = 0 \) \[ (0 - 1)(0^2 - 3) = (-1)(-3) = 3 > 0 \] 3. **Interval \( (1, \sqrt{3}) \)**: Choose \( t = 2 \) \[ (2 - 1)(2^2 - 3) = (1)(4 - 3) = 1 > 0 \] 4. **Interval \( (\sqrt{3}, \infty) \)**: Choose \( t = 2 \) \[ (2 - 1)(2^2 - 3) = (1)(4 - 3) = 1 > 0 \] ### Step 6: Combine the Results The inequality is satisfied in the intervals: \[ (-\sqrt{3}, 1) \cup (1, \sqrt{3}) \cup (\sqrt{3}, \infty) \] ### Step 7: Convert Back to \( x \) Now we convert back to \( x \) using \( t = \tan x \): - For \( t = -\sqrt{3} \): \( x = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3} \) - For \( t = 1 \): \( x = \tan^{-1}(1) = \frac{\pi}{4} \) - For \( t = \sqrt{3} \): \( x = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \) Thus, the solution in terms of \( x \) is: \[ x \in \left(-\frac{\pi}{3}, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \] ### Final Solution The final solution is: \[ x \in \left(-\frac{\pi}{3}, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Solve sin^(-1) x gt tan^(-1) x

Solve tan x+tan 2x+tan 3x = tan x tan 2x tan 3x, x in [0, pi] .

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

Solve : tan^(2)x*tan^(2)3x*tan4x=tan^(2)x-tan^(2)3x+tan4x

tan 5x tan3x tan2x=

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve tan x - tan^2 x gt 0and |2 sin x| lt 1 .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3