Home
Class 12
MATHS
Solve the equation: cos^2[pi/4(sinx+sqrt...

Solve the equation: `cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1`

A

1

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \cos^2\left(\frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right)\right) - \tan^2\left(x + \frac{\pi}{4}\tan^2 x\right) = 1, \] we will follow these steps: ### Step 1: Simplify the Equation We start by rewriting the equation: \[ \cos^2\left(\frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right)\right) = 1 + \tan^2\left(x + \frac{\pi}{4}\tan^2 x\right). \] Using the identity \( \cos^2 A = 1 - \sin^2 A \) and \( 1 + \tan^2 B = \sec^2 B \), we can rewrite the left-hand side as: \[ 1 - \sin^2\left(\frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right)\right) = \sec^2\left(x + \frac{\pi}{4}\tan^2 x\right). \] ### Step 2: Set Up the Equation This leads us to: \[ \sin^2\left(\frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right)\right) = 1 - \sec^2\left(x + \frac{\pi}{4}\tan^2 x\right). \] Since \( \sec^2 B \) is always greater than or equal to 1, the right-hand side is non-positive, which means the left-hand side must also equal zero: \[ \sin^2\left(\frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right)\right) = 0. \] ### Step 3: Solve for \( x \) The sine function equals zero at integer multiples of \( \pi \): \[ \frac{\pi}{4}\left(\sin x + \sqrt{2}\cos^2 x\right) = n\pi \quad \text{for } n \in \mathbb{Z}. \] This simplifies to: \[ \sin x + \sqrt{2}\cos^2 x = 4n. \] ### Step 4: Substitute and Rearrange Rearranging gives us: \[ \sin x = 4n - \sqrt{2}\cos^2 x. \] Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \sin x = 4n - \sqrt{2}(1 - \sin^2 x). \] ### Step 5: Form a Quadratic Equation This leads to: \[ \sqrt{2}\sin^2 x + \sin x + (4n - \sqrt{2}) = 0. \] ### Step 6: Solve the Quadratic Using the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = \sqrt{2}, b = 1, c = 4n - \sqrt{2} \): \[ \sin x = \frac{-1 \pm \sqrt{1 - 4\sqrt{2}(4n - \sqrt{2})}}{2\sqrt{2}}. \] ### Step 7: Find Solutions We will need to check the discriminant to ensure it is non-negative for real solutions. ### Step 8: General Solutions For each valid \( n \), we can find corresponding \( x \) values using: \[ x = \arcsin\left(\text{value}\right) + 2k\pi \quad \text{and} \quad x = \pi - \arcsin\left(\text{value}\right) + 2k\pi \quad (k \in \mathbb{Z}). \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve the equation for x: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

Solve the equation tan 2x = -cot (x+pi/6) .

Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt=pi)

Solve the equation ( cos x - sin x )(2 tan x +(1)/( cos x ))+2 =0

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x\ )=sqrt(2)sinx

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx