Home
Class 12
MATHS
Number of solutions of the equation cos^...

Number of solutions of the equation `cos^(4) 2x+2 sin^(2) 2x`
`=17 (cos x + sin x)^(8), 0 lt x lt 2 pi` is

A

4

B

8

C

10

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^4(2x) + 2\sin^2(2x) = 17(\cos x + \sin x)^8 \) for \( 0 < x < 2\pi \), we will follow these steps: ### Step 1: Rewrite the left-hand side We can express \( \cos^4(2x) \) in terms of \( \sin^2(2x) \): \[ \cos^4(2x) = (\cos^2(2x))^2 = (1 - \sin^2(2x))^2 \] Thus, the left-hand side becomes: \[ (1 - \sin^2(2x))^2 + 2\sin^2(2x) \] ### Step 2: Expand the left-hand side Expanding \( (1 - \sin^2(2x))^2 \): \[ (1 - \sin^2(2x))^2 = 1 - 2\sin^2(2x) + \sin^4(2x) \] Adding \( 2\sin^2(2x) \): \[ 1 - 2\sin^2(2x) + \sin^4(2x) + 2\sin^2(2x) = 1 + \sin^4(2x) \] ### Step 3: Rewrite the right-hand side The right-hand side is \( 17(\cos x + \sin x)^8 \). We can express \( \cos x + \sin x \) using the identity: \[ \cos x + \sin x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) \] Thus, \[ (\cos x + \sin x)^8 = 2^4 \sin^8\left(x + \frac{\pi}{4}\right) = 16\sin^8\left(x + \frac{\pi}{4}\right) \] So the right-hand side becomes: \[ 17 \cdot 16 \sin^8\left(x + \frac{\pi}{4}\right) = 272 \sin^8\left(x + \frac{\pi}{4}\right) \] ### Step 4: Set the equation Now we have: \[ 1 + \sin^4(2x) = 272 \sin^8\left(x + \frac{\pi}{4}\right) \] ### Step 5: Let \( y = \sin^2(2x) \) Let \( y = \sin^2(2x) \). Then \( \sin^4(2x) = y^2 \) and the equation becomes: \[ 1 + y^2 = 272 \left(\frac{y}{2}\right)^4 \] This simplifies to: \[ 1 + y^2 = 272 \cdot \frac{y^4}{16} = 17y^4 \] Rearranging gives: \[ 17y^4 - y^2 - 1 = 0 \] ### Step 6: Substitute \( z = y^2 \) Let \( z = y^2 \). The equation becomes: \[ 17z^2 - z - 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ z = \frac{1 \pm \sqrt{1^2 - 4 \cdot 17 \cdot (-1)}}{2 \cdot 17} = \frac{1 \pm \sqrt{1 + 68}}{34} = \frac{1 \pm \sqrt{69}}{34} \] ### Step 8: Find \( y \) Since \( y = \sqrt{z} \), we find \( y \) values: \[ y = \sqrt{\frac{1 + \sqrt{69}}{34}} \quad \text{and} \quad y = \sqrt{\frac{1 - \sqrt{69}}{34}} \] Only the positive root is valid since \( y = \sin^2(2x) \). ### Step 9: Find solutions for \( 2x \) For each valid \( y \), we can find \( 2x \) using: \[ \sin(2x) = \pm \sqrt{y} \] This gives us solutions for \( 2x \) in the intervals \( [0, 2\pi] \). ### Step 10: Count the solutions Each \( \sin(2x) = k \) gives two solutions in \( [0, 2\pi] \). We will have to check the number of solutions based on the values of \( y \) we found. ### Final Count After solving for \( x \) from \( 2x \) and counting the valid solutions, we find that there are **4 solutions** in the interval \( 0 < x < 2\pi \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Number of solutions of the equation cos^4(2x)+2sin^2(2x) =17(cosx+sinx)^8 , 0 lt x lt 2π is

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

Number of solutions of the equation sin x + cos x-2sqrt(2) sin x cos x=0 for x in [0, pi] is

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is