Home
Class 12
MATHS
0 lt a lt 2 pi , sin^(-1)(sin a ) lt x^(...

`0 lt a lt 2 pi , sin^(-1)(sin a ) lt x^(2)-2x ` for all ` x in I` then ` a in `

A

`(0,pi +1)`

B

`(pi+1,(3pi)/(2))`

C

`((3pi)/(2), 2 pi -1)`

D

`(2pi-1, 2 pi )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sin^{-1}(\sin a) < x^2 - 2x \) for all \( x \in \mathbb{I} \) where \( 0 < a < 2\pi \), we will follow these steps: ### Step 1: Find the minimum value of the quadratic expression \( x^2 - 2x \) The quadratic expression \( x^2 - 2x \) can be rewritten in vertex form. The vertex \( x \) of a quadratic \( ax^2 + bx + c \) is given by: \[ x = -\frac{b}{2a} \] Here, \( a = 1 \) and \( b = -2 \). Thus, \[ x = -\frac{-2}{2 \cdot 1} = 1 \] ### Step 2: Calculate the minimum value of \( x^2 - 2x \) at \( x = 1 \) Now, substitute \( x = 1 \) into the expression: \[ x^2 - 2x = 1^2 - 2 \cdot 1 = 1 - 2 = -1 \] ### Step 3: Set up the inequality involving \( \sin^{-1}(\sin a) \) From the previous steps, we have: \[ \sin^{-1}(\sin a) < -1 \] ### Step 4: Analyze the behavior of \( \sin^{-1}(\sin a) \) The function \( \sin^{-1}(\sin a) \) behaves differently depending on the value of \( a \): 1. For \( 0 \leq a \leq \frac{\pi}{2} \): \[ \sin^{-1}(\sin a) = a \] 2. For \( \frac{\pi}{2} < a < \frac{3\pi}{2} \): \[ \sin^{-1}(\sin a) = \pi - a \] 3. For \( \frac{3\pi}{2} < a < 2\pi \): \[ \sin^{-1}(\sin a) = 2\pi - a \] ### Step 5: Determine the intervals for \( a \) 1. **Interval \( 0 < a \leq \frac{\pi}{2} \)**: \[ a < -1 \quad \text{(not possible since \( a \) is positive)} \] 2. **Interval \( \frac{\pi}{2} < a < \frac{3\pi}{2} \)**: \[ \pi - a < -1 \implies a > \pi + 1 \quad \text{(approximately \( 4.14 \))} \] Since \( \frac{\pi}{2} \approx 1.57 \) and \( \frac{3\pi}{2} \approx 4.71 \), this interval is valid. 3. **Interval \( \frac{3\pi}{2} < a < 2\pi \)**: \[ 2\pi - a < -1 \implies a > 2\pi + 1 \quad \text{(not possible since \( a < 2\pi \))} \] ### Step 6: Conclusion From the analysis, the only valid interval for \( a \) is: \[ a \in (\pi + 1, \frac{3\pi}{2}) \] ### Final Answer Thus, the solution is: \[ a \in (\pi + 1, \frac{3\pi}{2}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi /2 then

If 0 lt x lt pi/2 then

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If 0 lt x lt 2 pi and |cos x| le sin x , then

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

If 0 lt x lt pi/2 show that cosxgt1- x^2/2

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

Find df/dx if f(x) = (sin x) ^ sin x for all o lt x lt pi .

If 0^(@)lt x lt 90^(@) and 5 sin^(2)x = 7 sin x - 2 , what is the vlaue of sin x ?

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3