Home
Class 12
MATHS
If xk = (sectheta)^(1/2^k)+ (tan theta)^...

If `x_k = (sectheta)^(1/2^k)+ (tan theta)^(1/(2^k) ` `and y_k = (sectheta)^(1/(2^k))-(tan theta)^(1/2^k)` , then value of `3y_n prod_(k=0)^n (x_k)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 3y_n \prod_{k=0}^{n} x_k \) where: \[ x_k = (\sec \theta)^{1/2^k} + (\tan \theta)^{1/2^k} \] \[ y_k = (\sec \theta)^{1/2^k} - (\tan \theta)^{1/2^k} \] ### Step 1: Express \( y_n \) We can express \( y_n \) as: \[ y_n = (\sec \theta)^{1/2^n} - (\tan \theta)^{1/2^n} \] ### Step 2: Express \( \prod_{k=0}^{n} x_k \) Next, we need to evaluate the product \( \prod_{k=0}^{n} x_k \): \[ x_k = (\sec \theta)^{1/2^k} + (\tan \theta)^{1/2^k} \] Using the identity \( a^2 - b^2 = (a-b)(a+b) \), we can rewrite the product: \[ \prod_{k=0}^{n} x_k = \prod_{k=0}^{n} \left( (\sec \theta)^{1/2^k} + (\tan \theta)^{1/2^k} \right) \] ### Step 3: Use the identity for \( x_k \) and \( y_k \) Notice that: \[ x_k y_k = \left( (\sec \theta)^{1/2^k} + (\tan \theta)^{1/2^k} \right) \left( (\sec \theta)^{1/2^k} - (\tan \theta)^{1/2^k} \right) = (\sec \theta)^{2/2^k} - (\tan \theta)^{2/2^k} = \sec^{2/2^k} \theta - \tan^{2/2^k} \theta \] ### Step 4: Simplify \( \prod_{k=0}^{n} x_k \) The product can be simplified using the above identity: \[ \prod_{k=0}^{n} x_k = \prod_{k=0}^{n} \left( y_k + 2(\tan \theta)^{1/2^k} \right) \] ### Step 5: Combine \( 3y_n \) and \( \prod_{k=0}^{n} x_k \) Now, we can combine \( 3y_n \) with the product: \[ 3y_n \prod_{k=0}^{n} x_k = 3 \left( (\sec \theta)^{1/2^n} - (\tan \theta)^{1/2^n} \right) \prod_{k=0}^{n} x_k \] ### Step 6: Evaluate the final expression Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ 3y_n \prod_{k=0}^{n} x_k = 3 \cdot 1 = 3 \] ### Final Answer Thus, the value of \( 3y_n \prod_{k=0}^{n} x_k \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

If sin theta=(1)/(2) (a+(1)/(a)) and sin 3 theta=(k)/(2)(a^(3)+(1)/(a^(3))) , then k+6 is equal to :

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Let A=[(1,3cos 2theta,1),(sin2theta, 1, 3 cos 2 theta),(1, sin 2 theta, 1)] the maximum value of |A| is equal to k, then (k-3)^(2) is equal to

Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k)) . The value of F(1)+F(2)+F(3) is equal to

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

Consider a parabola y = (x^(2))/(4) and the point F (0,1). Let A _(1)(x_(1), y_(1)),A _(2)(x _(2), y_(2)), A_(3)(x_(3), y_(3)),....., A_(n ) (x _(n), y _(n)) are 'n' points on the parabola such x _(k) gt 0 and angle OFA_(k)= (k pi)/(2n) (k =1,2,3,......, n ). Then the value of lim _( n to oo) 1/n sum _(k =1) ^(n) FA_(k), is equal to :

The value of 2 sin^2 theta + k cos^2 2 theta =1 , then k is equal to :