Home
Class 12
MATHS
If (cos^(3) theta )/( (1- sin theta ))+...

If ` (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta `, then number of possible values of ` theta ` is ( where ` theta in [0,2pi]`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos^3 \theta}{1 - \sin \theta} + \frac{\sin^3 \theta}{1 + \cos \theta} = 1 + \cos \theta \] for \( \theta \) in the interval \([0, 2\pi]\), we will follow these steps: ### Step 1: Rationalize the fractions We start by rationalizing the two fractions separately. 1. The first term: \[ \frac{\cos^3 \theta}{1 - \sin \theta} \cdot \frac{1 + \sin \theta}{1 + \sin \theta} = \frac{\cos^3 \theta (1 + \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} = \frac{\cos^3 \theta (1 + \sin \theta)}{\cos^2 \theta} \] This simplifies to: \[ \frac{\cos \theta (1 + \sin \theta)}{1} \] 2. The second term: \[ \frac{\sin^3 \theta}{1 + \cos \theta} \cdot \frac{1 - \cos \theta}{1 - \cos \theta} = \frac{\sin^3 \theta (1 - \cos \theta)}{(1 + \cos \theta)(1 - \cos \theta)} = \frac{\sin^3 \theta (1 - \cos \theta)}{\sin^2 \theta} \] This simplifies to: \[ \frac{\sin \theta (1 - \cos \theta)}{1} \] ### Step 2: Combine the terms Now we can combine the two simplified terms: \[ \cos \theta (1 + \sin \theta) + \sin \theta (1 - \cos \theta) = 1 + \cos \theta \] ### Step 3: Expand and simplify Expanding the left side: \[ \cos \theta + \cos \theta \sin \theta + \sin \theta - \sin \theta \cos \theta = 1 + \cos \theta \] This simplifies to: \[ \cos \theta + \sin \theta = 1 + \cos \theta \] ### Step 4: Isolate the sine term Subtract \(\cos \theta\) from both sides: \[ \sin \theta = 1 \] ### Step 5: Solve for \(\theta\) The equation \(\sin \theta = 1\) has a solution: \[ \theta = \frac{\pi}{2} \] ### Step 6: Check for validity We need to check if this solution is valid in the original equation: Substituting \(\theta = \frac{\pi}{2}\): - \(\cos \frac{\pi}{2} = 0\) - \(\sin \frac{\pi}{2} = 1\) Substituting into the left side: \[ \frac{0^3}{1 - 1} + \frac{1^3}{1 + 0} = \frac{0}{0} + 1 = \text{undefined} \] The left side is indeterminate, thus \(\theta = \frac{\pi}{2}\) is rejected. ### Conclusion Since there are no other solutions in the interval \([0, 2\pi]\), the number of possible values of \(\theta\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that : (cos theta)/(1-tan theta) + (sin theta)/(1-cot theta) = sin theta + cos theta

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1 is (2)/(sqrt3) , then the sum of all the possible values of theta is (where, theta in (0, pi) )

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove that (1- cos theta + sin theta)/( 1+cos theta +sin theta) = "tan"(theta)/(2) .