Home
Class 12
MATHS
Find all the value of theta satisfying...

Find all the value of ` theta ` satisfying the equation , ` sin 7 theta = sin theta + sin 3 theta ` such that ` 0 le theta le pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(7\theta) = \sin(\theta) + \sin(3\theta) \) for \( 0 \leq \theta \leq \pi \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin(7\theta) - \sin(\theta) - \sin(3\theta) = 0 \] This can be rearranged to: \[ \sin(7\theta) - \sin(\theta) = \sin(3\theta) \] ### Step 2: Use the sine subtraction formula Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] we can apply it to \( \sin(7\theta) - \sin(\theta) \): \[ \sin(7\theta) - \sin(\theta) = 2 \cos\left(\frac{7\theta + \theta}{2}\right) \sin\left(\frac{7\theta - \theta}{2}\right) \] This simplifies to: \[ 2 \cos(4\theta) \sin(3\theta) \] ### Step 3: Substitute back into the equation Now we substitute this back into our equation: \[ 2 \cos(4\theta) \sin(3\theta) = \sin(3\theta) \] ### Step 4: Factor the equation We can factor out \( \sin(3\theta) \): \[ \sin(3\theta)(2 \cos(4\theta) - 1) = 0 \] ### Step 5: Solve for \( \sin(3\theta) = 0 \) The first part of the equation gives us: \[ \sin(3\theta) = 0 \] This implies: \[ 3\theta = n\pi \quad \text{for } n \in \mathbb{Z} \] Thus: \[ \theta = \frac{n\pi}{3} \] Considering the range \( 0 \leq \theta \leq \pi \), the possible values of \( n \) are \( 0, 1, 2, 3 \): - For \( n = 0 \): \( \theta = 0 \) - For \( n = 1 \): \( \theta = \frac{\pi}{3} \) - For \( n = 2 \): \( \theta = \frac{2\pi}{3} \) - For \( n = 3 \): \( \theta = \pi \) ### Step 6: Solve for \( 2 \cos(4\theta) - 1 = 0 \) The second part of the equation gives us: \[ 2 \cos(4\theta) - 1 = 0 \implies \cos(4\theta) = \frac{1}{2} \] This implies: \[ 4\theta = \frac{\pi}{3} + 2k\pi \quad \text{or} \quad 4\theta = \frac{5\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \] Thus: 1. From \( 4\theta = \frac{\pi}{3} + 2k\pi \): \[ \theta = \frac{\pi}{12} + \frac{k\pi}{2} \] For \( k = 0 \): \( \theta = \frac{\pi}{12} \) For \( k = 1 \): \( \theta = \frac{7\pi}{12} \) 2. From \( 4\theta = \frac{5\pi}{3} + 2k\pi \): \[ \theta = \frac{5\pi}{12} + \frac{k\pi}{2} \] For \( k = 0 \): \( \theta = \frac{5\pi}{12} \) ### Step 7: Collect all solutions Now we compile all the solutions: - From \( \sin(3\theta) = 0 \): \( \theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \) - From \( \cos(4\theta) = \frac{1}{2} \): \( \theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12} \) ### Final Solutions Thus, the complete set of solutions in the interval \( 0 \leq \theta \leq \pi \) is: \[ \theta = 0, \frac{\pi}{12}, \frac{\pi}{3}, \frac{5\pi}{12}, \frac{2\pi}{3}, \frac{7\pi}{12}, \pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find all the values of theta satisfying the equation sin theta + sin 5 theta = sin 3 theta, such that 0 le theta le pi.

Find all the values of theta satisfying the equation cos 2 theta - cos 8 theta + cos 6 theta =1, such that 0 le theta le pi.

Find the most general values of theta satisfying the equation : sin theta = -1

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Find the values of theta which satisfy r sin theta=3 and r=4 (1 + sin theta), 0 <= theta <= 2 pi

Solve that equation : sintheta+sin3theta+sin5theta=0.

The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" theta " and " 0 lt theta lt (pi)/(2) are

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi