Home
Class 12
MATHS
sin(3theta+alpha)+sin(3theta-alpha)+sin(...

`sin(3theta+alpha)+sin(3theta-alpha)+sin(alpha-theta)-sin(alpha+theta)=cosalpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(3\theta + \alpha) + \sin(3\theta - \alpha) + \sin(\alpha - \theta) - \sin(\alpha + \theta) = \cos \alpha \), we can follow these steps: ### Step 1: Combine the sine terms Using the sine addition and subtraction formulas: \[ \sin(a + b) + \sin(a - b) = 2 \sin a \cos b \] we can rewrite the first two terms: \[ \sin(3\theta + \alpha) + \sin(3\theta - \alpha) = 2 \sin(3\theta) \cos(\alpha) \] Now, for the last two terms: \[ \sin(\alpha - \theta) - \sin(\alpha + \theta) = -2 \sin(\theta) \cos(\alpha) \] Thus, the equation becomes: \[ 2 \sin(3\theta) \cos(\alpha) - 2 \sin(\theta) \cos(\alpha) = \cos(\alpha) \] ### Step 2: Factor out common terms We can factor out \( 2 \cos(\alpha) \) from the left side: \[ 2 \cos(\alpha) (\sin(3\theta) - \sin(\theta)) = \cos(\alpha) \] ### Step 3: Divide both sides by \( \cos(\alpha) \) Assuming \( \cos(\alpha) \neq 0 \), we can divide both sides by \( \cos(\alpha) \): \[ 2 (\sin(3\theta) - \sin(\theta)) = 1 \] ### Step 4: Simplify the equation This simplifies to: \[ \sin(3\theta) - \sin(\theta) = \frac{1}{2} \] ### Step 5: Use the sine triple angle formula Using the identity \( \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) \), we can substitute: \[ 3\sin(\theta) - 4\sin^3(\theta) - \sin(\theta) = \frac{1}{2} \] This simplifies to: \[ 2\sin(\theta) - 4\sin^3(\theta) = \frac{1}{2} \] ### Step 6: Rearranging the equation Rearranging gives us: \[ 4\sin^3(\theta) - 2\sin(\theta) + \frac{1}{2} = 0 \] Multiplying through by 2 to eliminate the fraction: \[ 8\sin^3(\theta) - 4\sin(\theta) + 1 = 0 \] ### Step 7: Let \( x = \sin(\theta) \) Let \( x = \sin(\theta) \), we have: \[ 8x^3 - 4x + 1 = 0 \] ### Step 8: Solve the cubic equation Now we can solve the cubic equation \( 8x^3 - 4x + 1 = 0 \). We can use numerical methods or factorization if possible. ### Step 9: Finding the roots Using the Rational Root Theorem or synthetic division, we can find the roots. Let's assume we find one root \( x = \frac{1}{2} \). ### Step 10: Finding \( \theta \) If \( \sin(\theta) = \frac{1}{2} \), then: \[ \theta = \frac{\pi}{6} + n\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + n\pi \] for \( n \in \mathbb{Z} \). ### Final Solution Thus, the general solutions for \( \theta \) are: \[ \theta = \frac{\pi}{6} + n\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + n\pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If sin^2(theta-alpha)c a salpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha, then prove that |m|geq1/(sqrt(2))

If sin^2(theta-alpha)c osalpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha, then prove that |m|geq1/(sqrt(2))

Simplify be reducing to a single term : cos (theta + alpha ) cos ( theta - alpha ) - sin ( theta + alpha ) sin (theta - alpha).

Prove that : 2 sin^2 theta + 4 cos (theta + alpha) sin alpha sin theta + cos 2 (alpha + theta) is independent of theta.

The value of the determinant |{:(cos(theta+alpha),-sin(theta+alpha),cos2alpha),(sintheta,costheta,sinalpha),(-costheta,sintheta,lambdacosalpha):}| is

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

Find the general value of theta from the equation sinalpha+sin(alpha+theta)+sin(alpha+2theta)=0 .

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I