Home
Class 12
MATHS
Find all the solution of 4 cos^(2)x sin...

Find all the solution of ` 4 cos^(2)x sinx -2 sin^(2) x=3 sinx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4 \cos^2 x \sin x - 2 \sin^2 x = 3 \sin x \), we can follow these steps: ### Step 1: Rewrite the Equation Start by rewriting \( \cos^2 x \) in terms of \( \sin x \): \[ \cos^2 x = 1 - \sin^2 x \] Substituting this into the equation gives: \[ 4(1 - \sin^2 x) \sin x - 2 \sin^2 x = 3 \sin x \] ### Step 2: Expand and Rearrange Now, expand the left-hand side: \[ 4 \sin x - 4 \sin^3 x - 2 \sin^2 x = 3 \sin x \] Rearranging this, we get: \[ -4 \sin^3 x - 2 \sin^2 x + 4 \sin x - 3 \sin x = 0 \] This simplifies to: \[ -4 \sin^3 x - 2 \sin^2 x + \sin x = 0 \] ### Step 3: Factor Out \( \sin x \) Factor out \( \sin x \): \[ \sin x (-4 \sin^2 x - 2 \sin x + 1) = 0 \] This gives us two cases to solve: 1. \( \sin x = 0 \) 2. \( -4 \sin^2 x - 2 \sin x + 1 = 0 \) ### Step 4: Solve \( \sin x = 0 \) The solutions for \( \sin x = 0 \) are: \[ x = n\pi, \quad n \in \mathbb{Z} \] ### Step 5: Solve the Quadratic Equation Now, solve the quadratic equation: \[ -4 \sin^2 x - 2 \sin x + 1 = 0 \] Multiplying through by -1 gives: \[ 4 \sin^2 x + 2 \sin x - 1 = 0 \] Using the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 4, b = 2, c = -1 \) \[ \sin x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} \] \[ = \frac{-2 \pm \sqrt{4 + 16}}{8} = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8} = \frac{-1 \pm \sqrt{5}}{4} \] ### Step 6: Find Values of \( x \) Now we have: \[ \sin x = \frac{-1 + \sqrt{5}}{4} \quad \text{and} \quad \sin x = \frac{-1 - \sqrt{5}}{4} \] The second value \( \frac{-1 - \sqrt{5}}{4} \) is less than -1, which is not possible for sine. So we only consider: \[ \sin x = \frac{-1 + \sqrt{5}}{4} \] ### Step 7: General Solutions The general solutions for \( \sin x = k \) are given by: \[ x = n\pi + (-1)^n \arcsin\left(\frac{-1 + \sqrt{5}}{4}\right), \quad n \in \mathbb{Z} \] ### Final Solution Combining both cases, the complete solution set is: \[ x = n\pi \quad \text{or} \quad x = n\pi + (-1)^n \arcsin\left(\frac{-1 + \sqrt{5}}{4}\right), \quad n \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find all the solution of 4cos^2xsinx-2sin^2x=3sinx

Find all the solution of 4co s^2xsinx-2sin^2x=3sinx

Find the general solutions of equation sin^(4)x + cos^(4)x=sinx cosx

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

Find the number of solutions of 2^(|x|)=sinx^(2)

Find the number of solutions of 2cos x=|sinx| when x in [0,4pi] .

The number of solution of sin^4x-cos^2xsinx+2sin^2x+sinx=0in0lt=xlt=3pi is