Home
Class 12
MATHS
Find all possible triplets (x,y,z) such ...

Find all possible triplets (x,y,z) such that `(x+y)+(y+2z) cos 2 theta +(z-x) sin^(2) theta =0` , for all ` theta `.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x+y) + (y + 2z) \cos 2\theta + (z - x) \sin^2 \theta = 0\) for all \(\theta\), we will analyze the equation step-by-step. ### Step 1: Rewrite the equation We start with the equation: \[ (x+y) + (y + 2z) \cos 2\theta + (z - x) \sin^2 \theta = 0 \] This can be rearranged as: \[ x + y + (y + 2z) \cos 2\theta + (z - x) \sin^2 \theta = 0 \] ### Step 2: Use the identity for \(\sin^2 \theta\) We know that: \[ \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \] Substituting this into the equation gives: \[ x + y + (y + 2z) \cos 2\theta + (z - x) \left(\frac{1 - \cos 2\theta}{2}\right) = 0 \] Multiplying through by 2 to eliminate the fraction: \[ 2(x + y) + 2(y + 2z) \cos 2\theta + (z - x)(1 - \cos 2\theta) = 0 \] ### Step 3: Expand the equation Expanding the equation results in: \[ 2x + 2y + 2(y + 2z) \cos 2\theta + (z - x) - (z - x) \cos 2\theta = 0 \] This simplifies to: \[ (2x + 2y + z - x) + (2y + 2z - z + x) \cos 2\theta = 0 \] Rearranging terms gives: \[ (2x + 2y + z - x) + (y + z + x) \cos 2\theta = 0 \] ### Step 4: Separate constant and variable terms For this equation to hold for all \(\theta\), both the constant term and the coefficient of \(\cos 2\theta\) must independently equal zero: 1. Constant term: \[ 2x + 2y + z - x = 0 \implies x + 2y + z = 0 \quad \text{(1)} \] 2. Coefficient of \(\cos 2\theta\): \[ y + z + x = 0 \quad \text{(2)} \] ### Step 5: Solve the system of equations From equation (2): \[ y + z + x = 0 \implies z = -x - y \quad \text{(3)} \] Substituting equation (3) into equation (1): \[ x + 2y + (-x - y) = 0 \implies x + 2y - x - y = 0 \implies y = 0 \] Substituting \(y = 0\) back into equation (3): \[ z = -x - 0 = -x \] ### Step 6: Write the final triplet Thus, we have: \[ y = 0, \quad z = -x \] The triplet can be expressed as: \[ (x, 0, -x) \quad \text{for any real number } x. \] ### Final Answer: The possible triplets \((x, y, z)\) are: \[ (x, 0, -x) \quad \text{where } x \in \mathbb{R}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

Prove that all lines represented by the equation (2 cos theta + 3 sin theta ) x + (3 cos theta - 5 sin theta ) y = 5 cos theta - 2 sin theta pass through a fixed point for all theta What are the coordinates of this fixed point ?

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

Find the centre and radius of the circles : 1/2 (x^2 + y^2) + x cos theta + y sin theta - 4 = 0

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

Show that the point (x, y) , where x=a+r cos theta, y = b + r sin theta , lies on a circle for all values of theta .

Show that the point (x, y) , where x=5 cos theta, y=-3+5 sin theta , lies on a circle for all values of theta

What is the equation of the plane which passes through the z-axis and is perpendicular to the line (x-a)/(cos theta) = (y+2)/(sin theta) = (z-3)/0 ? (A) x+y tan theta=0 (B) y+x tan theta=0 (C) x cos theta-y sin theta=0 (D) x sin theta-y cos theta=0

If cot theta = (x)/(y) , find the value of: " " ( x cos theta + y sin theta)/( y sin theta - x cos theta)

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta