Home
Class 12
MATHS
Solve the inequality (5)/4 sin^(2) x + ...

Solve the inequality ` (5)/4 sin^(2) x + sin^(2) x * cos^(2)x gt cos 2x. `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \frac{5}{4} \sin^2 x + \sin^2 x \cos^2 x > \cos 2x \), we will follow these steps: ### Step 1: Rewrite \( \cos 2x \) We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can rewrite the inequality as: \[ \frac{5}{4} \sin^2 x + \sin^2 x \cos^2 x > 2 \cos^2 x - 1 \] ### Step 2: Substitute \( \sin^2 x \) Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can substitute \( \sin^2 x \): \[ \frac{5}{4} (1 - \cos^2 x) + (1 - \cos^2 x) \cos^2 x > 2 \cos^2 x - 1 \] ### Step 3: Simplify the left-hand side Expanding the left-hand side: \[ \frac{5}{4} - \frac{5}{4} \cos^2 x + \cos^2 x - \cos^4 x > 2 \cos^2 x - 1 \] Combine like terms: \[ \frac{5}{4} - \frac{5}{4} \cos^2 x + \cos^2 x - 2 \cos^2 x + 1 > -\cos^4 x \] This simplifies to: \[ \frac{9}{4} - \frac{9}{4} \cos^2 x > -\cos^4 x \] ### Step 4: Rearrange the inequality Rearranging gives: \[ \cos^4 x - \frac{9}{4} \cos^2 x + \frac{9}{4} > 0 \] ### Step 5: Let \( t = \cos^2 x \) Let \( t = \cos^2 x \), then we have: \[ t^2 - \frac{9}{4} t + \frac{9}{4} > 0 \] ### Step 6: Solve the quadratic inequality To find the roots of the quadratic equation: \[ t^2 - \frac{9}{4} t + \frac{9}{4} = 0 \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{\frac{9}{4} \pm \sqrt{\left(\frac{9}{4}\right)^2 - 4 \cdot 1 \cdot \frac{9}{4}}}{2 \cdot 1} \] Calculating the discriminant: \[ \left(\frac{9}{4}\right)^2 - 4 \cdot 1 \cdot \frac{9}{4} = \frac{81}{16} - \frac{36}{4} = \frac{81}{16} - \frac{144}{16} = -\frac{63}{16} \] Since the discriminant is negative, the quadratic does not cross the x-axis and is always positive. ### Step 7: Determine the range of \( t \) Since \( t = \cos^2 x \) must be between 0 and 1, we conclude: \[ \cos^2 x \in (0, 1) \] ### Step 8: Find the values of \( x \) From \( \cos^2 x = t \): - \( \cos x = \sqrt{t} \) or \( \cos x = -\sqrt{t} \) - This gives us: \[ x = n\pi + \cos^{-1}(\sqrt{t}) \quad \text{and} \quad x = n\pi - \cos^{-1}(\sqrt{t}) \] ### Final Answer The solution to the inequality is: \[ x \in \left( n\pi + \frac{\pi}{6}, n\pi + \frac{5\pi}{6} \right) \quad \text{for integers } n \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve the inequality . sin x cos x +(1)/(2) tan x ge 1

Solve the inequality 5+ 2 cos 2x le 3 | 2 sin x - 1|

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

Solve the following inequality: sin^(-1) x > cos^(-1) x

Solve the inequality sin2x gtsqrt(2)sin^2x+(2-sqrt(2))cos^2x

Solve the inequality sin2x gtsqrt(2)sin^2x+(2-sqrt(2))cos^2x

Solve the equation sin^(2)x + cos^(2)3x=1

Solve the equation 5sin^(2)x-7sinx cosx+16cos^(2)x=4

Solve 4 cos^(2)x+6 sin^(2)x=5 .

Solve the equation, 4^(sin2x + 2cos^(2)x+ 2sin^(2)x)=64 .