Home
Class 12
MATHS
If (1)/(cos alpha * cos beta )+ tan alp...

If ` (1)/(cos alpha * cos beta )+ tan alpha * tan beta = tan gamma ` , where ` 0 lt gamma lt (pi)/2 and alpha , beta ` are positive acute angles , show that ` (pi)/4 lt gamma lt (pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \frac{1}{\cos \alpha \cos \beta} + \tan \alpha \tan \beta = \tan \gamma \] where \(0 < \gamma < \frac{\pi}{2}\) and \(\alpha, \beta\) are positive acute angles. We need to show that: \[ \frac{\pi}{4} < \gamma < \frac{\pi}{2} \] ### Step 1: Rewrite the equation We can rewrite the equation by expressing \(\tan \alpha\) and \(\tan \beta\) in terms of \(\sec\): \[ \frac{1}{\cos \alpha \cos \beta} + \tan \alpha \tan \beta = \tan \gamma \] This can be rewritten as: \[ \sec \alpha \sec \beta + \tan \alpha \tan \beta = \tan \gamma \] ### Step 2: Use the identity for \(\sec\) and \(\tan\) Using the identity \(\sec^2 \theta = 1 + \tan^2 \theta\), we can express \(\sec \alpha\) and \(\sec \beta\): \[ \sec \alpha = \sqrt{1 + \tan^2 \alpha}, \quad \sec \beta = \sqrt{1 + \tan^2 \beta} \] ### Step 3: Square both sides Next, we square both sides of the equation: \[ \left(\sec \alpha \sec \beta + \tan \alpha \tan \beta\right)^2 = \tan^2 \gamma \] Expanding the left-hand side gives: \[ \sec^2 \alpha \sec^2 \beta + 2 \sec \alpha \sec \beta \tan \alpha \tan \beta + \tan^2 \alpha \tan^2 \beta = \tan^2 \gamma \] ### Step 4: Substitute the identities Substituting the identities we have: \[ (1 + \tan^2 \alpha)(1 + \tan^2 \beta) + 2 \sec \alpha \sec \beta \tan \alpha \tan \beta + \tan^2 \alpha \tan^2 \beta = \tan^2 \gamma \] ### Step 5: Simplify the equation After simplification, we get: \[ 1 + \tan^2 \alpha + \tan^2 \beta + \tan^2 \alpha \tan^2 \beta + 2 \sec \alpha \sec \beta \tan \alpha \tan \beta = \tan^2 \gamma \] ### Step 6: Analyze the inequality Since \(\alpha\) and \(\beta\) are acute angles, we know: \[ \tan \alpha > 0 \quad \text{and} \quad \tan \beta > 0 \] This implies that: \[ \tan^2 \alpha \tan^2 \beta > 0 \] Thus, we can conclude that: \[ \tan^2 \gamma > 1 \implies \tan \gamma > 1 \] ### Step 7: Conclude the range for \(\gamma\) Since \(\tan \gamma > 1\), we know: \[ \gamma > \frac{\pi}{4} \] And since \(\gamma < \frac{\pi}{2}\) (as given), we have: \[ \frac{\pi}{4} < \gamma < \frac{\pi}{2} \] ### Final Conclusion Thus, we have shown that: \[ \frac{\pi}{4} < \gamma < \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If 0 lt alpha lt beta lt (pi)/(2) then

If tan gamma=sec alpha sec beta+tan alpha tan beta, then cos2 gamma is necessarily (A) ge0 (B) le0 (C) lt0 (D) gt0

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =