Home
Class 12
MATHS
Let (b cos x)/(2 cos 2x-1)=(b + sin x)/(...

Let `(b cos x)/(2 cos 2x-1)=(b + sin x)/((cos^(2) x-3 sin^(2) x) tan x), b in R`.
Equation has solutions if

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{b \cos x}{2 \cos 2x - 1} = \frac{b + \sin x}{(\cos^2 x - 3 \sin^2 x) \tan x} \] where \( b \in \mathbb{R} \), we need to analyze the conditions under which this equation has solutions. ### Step 1: Identify Denominators First, we need to ensure that the denominators are not equal to zero. 1. **Condition from \( 2 \cos 2x - 1 \neq 0 \)**: \[ 2 \cos 2x - 1 \neq 0 \implies \cos 2x \neq \frac{1}{2} \] This occurs when: \[ 2x \neq n\pi \pm \frac{\pi}{3} \implies x \neq \frac{n\pi}{2} \pm \frac{\pi}{6} \] where \( n \in \mathbb{Z} \). 2. **Condition from \( \cos^2 x - 3 \sin^2 x \neq 0 \)**: \[ \cos^2 x - 3 \sin^2 x \neq 0 \implies \cos^2 x \neq 3 \sin^2 x \] This can be rewritten using \( \sin^2 x = 1 - \cos^2 x \): \[ \cos^2 x \neq 3(1 - \cos^2 x) \implies 4\cos^2 x \neq 3 \implies \cos^2 x \neq \frac{3}{4} \] Thus, \( \cos x \neq \pm \frac{\sqrt{3}}{2} \). 3. **Condition from \( \tan x \neq 0 \)**: \[ \tan x \neq 0 \implies x \neq n\pi \] where \( n \in \mathbb{Z} \). ### Step 2: Rewrite the Equation Now, we can rewrite the original equation: \[ b \cos x ( \cos^2 x - 3 \sin^2 x) \tan x = (b + \sin x)(2 \cos 2x - 1) \] ### Step 3: Simplify the Equation Using the identity \( \cos 2x = 2\cos^2 x - 1 \): \[ b \cos x ( \cos^2 x - 3 \sin^2 x) \frac{\sin x}{\cos x} = (b + \sin x)(2\cos^2 x - 1 - 1) \] This simplifies to: \[ b \sin x (\cos^2 x - 3 \sin^2 x) = (b + \sin x)(2\cos^2 x - 2) \] ### Step 4: Analyze the Resulting Equation We can cancel \( \cos^2 x - 3 \sin^2 x \) from both sides (assuming it is not zero): \[ b \sin x = (b + \sin x)(2) \] This leads to: \[ b \sin x = 2b + 2\sin x \] Rearranging gives: \[ (b - 2)\sin x = 2b \] ### Step 5: Solve for \( \sin x \) From the equation: \[ \sin x = \frac{2b}{b - 2} \] For this to have solutions, \( \sin x \) must satisfy: \[ -1 \leq \frac{2b}{b - 2} \leq 1 \] ### Step 6: Solve the Inequalities 1. **First Inequality**: \[ 2b \geq - (b - 2) \implies 3b \geq 2 \implies b \geq \frac{2}{3} \] 2. **Second Inequality**: \[ 2b \leq b - 2 \implies b \leq -2 \] ### Step 7: Combine the Results Thus, the values of \( b \) for which the equation has solutions are: \[ b \in (-\infty, -2] \cup \left[\frac{2}{3}, \infty\right) \] ### Final Answer The equation has solutions if: \[ b \in (-\infty, -2] \cup \left[\frac{2}{3}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Matching Type Questions )|1 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

Prove that (sin 5x - 2 sin 3 x + sin x )/( cos 5 x - cos x ) = tan x

Prove that : (sin x + sin 3x)/(cos x + cos 3x) = tan 2x

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

Number of solutions of equation 2"sin" x/2 cos^(2) x-2 "sin" x/2 sin^(2) x=cos^(2) x-sin^(2) x for x in [0, 4pi] is

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)