Home
Class 12
MATHS
Find the general solution of sin x + si...

Find the general solution of ` sin x + sin 5x = sin 2 x + sin 4 x `.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin 5x = \sin 2x + \sin 4x \), we will follow these steps: ### Step 1: Apply the Sum-to-Product Identities We will use the sum-to-product identities for sine, which states: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] #### Left Side: For \( \sin x + \sin 5x \): - Let \( A = x \) and \( B = 5x \). - Then, we have: \[ \sin x + \sin 5x = 2 \sin\left(\frac{x + 5x}{2}\right) \cos\left(\frac{x - 5x}{2}\right) = 2 \sin(3x) \cos(2x) \] #### Right Side: For \( \sin 2x + \sin 4x \): - Let \( A = 2x \) and \( B = 4x \). - Then, we have: \[ \sin 2x + \sin 4x = 2 \sin\left(\frac{2x + 4x}{2}\right) \cos\left(\frac{2x - 4x}{2}\right) = 2 \sin(3x) \cos(x) \] ### Step 2: Set the Two Sides Equal Now we can set the two sides of the equation equal to each other: \[ 2 \sin(3x) \cos(2x) = 2 \sin(3x) \cos(x) \] ### Step 3: Simplify the Equation We can divide both sides by 2 (assuming \( \sin(3x) \neq 0 \)): \[ \sin(3x) \cos(2x) = \sin(3x) \cos(x) \] ### Step 4: Factor Out \( \sin(3x) \) Rearranging gives: \[ \sin(3x) \cos(2x) - \sin(3x) \cos(x) = 0 \] Factoring out \( \sin(3x) \): \[ \sin(3x) (\cos(2x) - \cos(x)) = 0 \] ### Step 5: Solve Each Factor This gives us two cases to solve: 1. \( \sin(3x) = 0 \) 2. \( \cos(2x) - \cos(x) = 0 \) #### Case 1: Solve \( \sin(3x) = 0 \) The general solution for \( \sin \theta = 0 \) is: \[ 3x = n\pi \quad \Rightarrow \quad x = \frac{n\pi}{3}, \quad n \in \mathbb{Z} \] #### Case 2: Solve \( \cos(2x) = \cos(x) \) Using the identity \( \cos A - \cos B = 0 \): \[ \cos(2x) = \cos(x) \quad \Rightarrow \quad 2x = 2k\pi \pm x \quad (k \in \mathbb{Z}) \] This gives us two equations: 1. \( 2x = 2k\pi + x \) \( \Rightarrow x = 2k\pi \) 2. \( 2x = 2k\pi - x \) \( \Rightarrow 3x = 2k\pi \) \( \Rightarrow x = \frac{2k\pi}{3} \) ### Step 6: Combine Solutions Combining all solutions: 1. From \( \sin(3x) = 0 \): \( x = \frac{n\pi}{3} \) 2. From \( \cos(2x) = \cos(x) \): \( x = 2k\pi \) and \( x = \frac{2k\pi}{3} \) ### Final General Solution Thus, the general solutions are: \[ x = \frac{n\pi}{3}, \quad n \in \mathbb{Z} \] \[ x = 2k\pi, \quad k \in \mathbb{Z} \] \[ x = \frac{2k\pi}{3}, \quad k \in \mathbb{Z} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLES ( Subjective Type Examples )|2 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find the general solution : sin x + sin 3x + sin 5x = 0

Find the general solution : sin 2x + cos x = 0

Find the general solution of sin5x cos 3x = sin9x cos7x

The general solution of 4 sin^4 x + cos^4x= 1 is

Find the general solution of (dy)/(dx)-3y=sin 2x

Find the general solution of 1+sin^3x + cos^(3)x=(3)/(2)sin 2x

Solve 4 sin x sin 2x sin 4x = sin 3x .

sin 10 x = 2 sin 5x cos 5x

Find the general solution of the trigonometric equation: sin 2x - sin 4x + sin 6x = 0

Find the general solutions of equation sin^(4)x + cos^(4)x=sinx cosx