Home
Class 12
MATHS
Find the number of integral values of k ...

Find the number of integral values of k for which the equation `7 cos x+5 sin x=2k+1` has at least one solution.

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Find the number of integral values of k for which the equation 12cosx - 5 sinx = 2k+1 has a solution.

The number of integral values of k for which the equation sin ^−1 x+tan −1 x=2k+1 has a solutions is:

The number of integral values of k for which the equation 7cos x +5 sinx=2k+1 has a solution is (1) 4 (2) 8 (3) 10 (4) 12

The number of integral values of k for which the equation 7cos x +5 sinx=2k+1 has a solution is (1) 4 (2) 8 (3) 10 (4) 12

The number of integral values of k for which the equation sin^(-1)x+tan^(-1)x=2k+1 has a solution is

The number of integral values of a for which the equation cos2x+a sin x=2a-7 possessess a solution.

The range of value's of k for which the equation 2 cos^(4) x - sin^(4) x + k = 0 has atleast one solution is [ lambda, mu] . Find the value of ( 9 mu + lambda) .

The value of p for which the equation 3 " sin"^(2)x + 12 "cos" x - 3 =p has at least one solution are

Number of integral values of k for which the equation 4 cos^(-1)(-|x|)=k has exactly two solutions, is: (a) 4 (b) 5 (c) 6 (d) 7

Find the minimum integral value of k for which the equation e^(x)=kx^(2) has exactly three real distinct solutions.