Home
Class 12
MATHS
Solve the equation (1-tantheta)(1+sin2th...

Solve the equation `(1-tantheta)(1+sin2theta)=1+tantheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (1 - \tan \theta)(1 + \sin 2\theta) = 1 + \tan \theta \), we will follow these steps: ### Step 1: Expand the left-hand side We start with the equation: \[ (1 - \tan \theta)(1 + \sin 2\theta) = 1 + \tan \theta \] Expanding the left-hand side gives: \[ 1 + \sin 2\theta - \tan \theta - \tan \theta \sin 2\theta = 1 + \tan \theta \] ### Step 2: Simplify the equation Next, we can cancel the \(1\) from both sides: \[ \sin 2\theta - \tan \theta - \tan \theta \sin 2\theta = \tan \theta \] Rearranging this gives: \[ \sin 2\theta - \tan \theta \sin 2\theta = 2\tan \theta \] ### Step 3: Substitute \(\sin 2\theta\) Recall that \(\sin 2\theta = 2 \sin \theta \cos \theta\) and \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Substitute these into the equation: \[ 2 \sin \theta \cos \theta - \left(\frac{\sin \theta}{\cos \theta}\right)(2 \sin \theta \cos \theta) = 2\left(\frac{\sin \theta}{\cos \theta}\right) \] This simplifies to: \[ 2 \sin \theta \cos \theta - 2 \sin^2 \theta = \frac{2 \sin \theta}{\cos \theta} \] ### Step 4: Multiply through by \(\cos \theta\) To eliminate the fraction, multiply the entire equation by \(\cos \theta\): \[ 2 \sin \theta \cos^2 \theta - 2 \sin^2 \theta \cos \theta = 2 \sin \theta \] ### Step 5: Rearranging the equation Rearranging gives: \[ 2 \sin \theta \cos^2 \theta - 2 \sin^2 \theta \cos \theta - 2 \sin \theta = 0 \] Factoring out \(2 \sin \theta\): \[ 2 \sin \theta (\cos^2 \theta - \sin \theta \cos \theta - 1) = 0 \] ### Step 6: Solve for \(\sin \theta = 0\) From \(2 \sin \theta = 0\), we have: \[ \sin \theta = 0 \implies \theta = n\pi, \quad n \in \mathbb{Z} \] ### Step 7: Solve the quadratic equation Now we solve the quadratic equation: \[ \cos^2 \theta - \sin \theta \cos \theta - 1 = 0 \] Using the substitution \(\sin \theta = \sqrt{1 - \cos^2 \theta}\), we can solve for \(\theta\) in terms of \(\cos \theta\). ### Step 8: Find the roots Using the quadratic formula: \[ \cos \theta = \frac{\sin \theta \pm \sqrt{(\sin \theta)^2 + 4}}{2} \] We can find the values of \(\theta\). ### Final Solution Thus, the solutions to the equation \( (1 - \tan \theta)(1 + \sin 2\theta) = 1 + \tan \theta \) are: \[ \theta = n\pi, \quad n \in \mathbb{Z} \] and any additional solutions from the quadratic equation.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: tantheta+tan2theta+tanthetatan2theta=1

Solve the equations : 2tantheta-cottheta=-1

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tantheta))^2

Prove that (1+sin2theta)/(1-sin2theta)=((1+tantheta)/(1-tan theta))^(2)

Solve the equation : "tan"^2theta+(1-sqrt(3))tantheta-sqrt(3)=0

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

The number of roots of (1-tantheta)(1+sin2theta)=1+tanthetafortheta in [0,2pi] is 3 (b) 4 (c) 5 (d) none of these

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

Solve the equation tantheta-cottheta="cosec"theta

Prove that (1+sin theta)/(1-sin theta)=(sec theta+tantheta)^(2)