Home
Class 12
MATHS
The general solution of 8 tan^(2)""(x)/(...

The general solution of `8 tan^(2)""(x)/(2)=1+ sec x ` is

A

` x = 2n pi pm cos^(-1)""((-1)/(3))`

B

`x= 2 n pi pm (pi)/(6)`

C

`x = 2 n pi pm cos^(-1)""((1)/(3)) `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the trigonometric equation \( \frac{8 \tan^2 \left( \frac{x}{2} \right)}{2} = 1 + \sec x \), we will follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ \frac{8 \tan^2 \left( \frac{x}{2} \right)}{2} = 1 + \sec x \] This simplifies to: \[ 4 \tan^2 \left( \frac{x}{2} \right) = 1 + \sec x \] ### Step 2: Rewrite \(\tan^2\) and \(\sec\) in terms of sine and cosine We know that: \[ \tan \left( \frac{x}{2} \right) = \frac{\sin \left( \frac{x}{2} \right)}{\cos \left( \frac{x}{2} \right)} \] Thus, \[ \tan^2 \left( \frac{x}{2} \right) = \frac{\sin^2 \left( \frac{x}{2} \right)}{\cos^2 \left( \frac{x}{2} \right)} \] Also, recall that: \[ \sec x = \frac{1}{\cos x} \] Substituting these into the equation gives: \[ 4 \cdot \frac{\sin^2 \left( \frac{x}{2} \right)}{\cos^2 \left( \frac{x}{2} \right)} = 1 + \frac{1}{\cos x} \] ### Step 3: Use half-angle identities Using the half-angle identities: \[ \sin^2 \left( \frac{x}{2} \right) = \frac{1 - \cos x}{2} \] \[ \cos^2 \left( \frac{x}{2} \right) = \frac{1 + \cos x}{2} \] Substituting these into the equation: \[ 4 \cdot \frac{\frac{1 - \cos x}{2}}{\frac{1 + \cos x}{2}} = 1 + \frac{1}{\cos x} \] This simplifies to: \[ 4 \cdot \frac{1 - \cos x}{1 + \cos x} = 1 + \frac{1}{\cos x} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 4(1 - \cos x) \cdot \cos x = (1 + \cos x)(1 + \cos x) \] Expanding both sides: \[ 4\cos x - 4\cos^2 x = 1 + 2\cos x + \cos^2 x \] ### Step 5: Rearranging the equation Rearranging terms leads to: \[ 4\cos^2 x - 6\cos x + 1 = 0 \] ### Step 6: Solve the quadratic equation Let \( y = \cos x \). The equation becomes: \[ 4y^2 - 6y + 1 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \] Calculating the discriminant: \[ = \frac{6 \pm \sqrt{36 - 16}}{8} = \frac{6 \pm \sqrt{20}}{8} = \frac{6 \pm 2\sqrt{5}}{8} = \frac{3 \pm \sqrt{5}}{4} \] ### Step 7: Find the general solution Thus, we have: \[ \cos x = \frac{3 + \sqrt{5}}{4} \quad \text{or} \quad \cos x = \frac{3 - \sqrt{5}}{4} \] Let \( \alpha_1 = \cos^{-1} \left( \frac{3 + \sqrt{5}}{4} \right) \) and \( \alpha_2 = \cos^{-1} \left( \frac{3 - \sqrt{5}}{4} \right) \). The general solutions are: \[ x = 2n\pi \pm \alpha_1 \quad \text{and} \quad x = 2n\pi \pm \alpha_2 \quad (n \in \mathbb{Z}) \] ### Final Answer The general solution of the equation is: \[ x = 2n\pi \pm \cos^{-1} \left( \frac{3+\sqrt{5}}{4} \right) \quad \text{and} \quad x = 2n\pi \pm \cos^{-1} \left( \frac{3-\sqrt{5}}{4} \right) \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The general solution of tan3x=1 is

The general solution of "tan" 3x =1 , is

Write the general solution of tan^2 2x=1.

The general solution of (dy)/(dx)+y tan x=sec x is

The general solution of the equation tan(2x+pi/(12))=0 is

The general solution of (tan 5x-tan 4x)/(1+ tan 5 x tan 4x)=1 is

The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :

The general solution of (dy)/(dx) =2ytan x+ tan ^(2)x is:

The general solution of the equation "sin"^(2)x."sec"x+sqrt(3) tanx=0 is

The general solution of sin^2 theta sec theta +sqrt3 tan theta=0 is (n in 1)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. Find the least positive value of x satisfying (sin^2 2x+4sin^4x-4sin^...

    Text Solution

    |

  2. The maximum value of the expression |sqrt(sin^2x+2a^2)-sqrt(2a^2-1-...

    Text Solution

    |

  3. The general solution of 8 tan^(2)""(x)/(2)=1+ sec x is

    Text Solution

    |

  4. General solution of tan theta+tan 4 theta+tan 7 theta=tan theta tan 4 ...

    Text Solution

    |

  5. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  6. Find the number of solution(s) of the equation cos (pi sqrt(x)) cos ...

    Text Solution

    |

  7. The number of real solution of equation Sin(e^x) = 5^x + 5^(-x) is :

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured ...

    Text Solution

    |

  10. The number of points of intersection of two curves y=2sinxa n dy=5x^2+...

    Text Solution

    |

  11. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  12. Find dy/dx if 2x+3y=sinx

    Text Solution

    |

  13. In the interval [-pi/2,pi/2] the equation log(sin theta)(cos 2 theta)=...

    Text Solution

    |

  14. If sum(i=1)^(n) cos theta(i)=n, then the value of sum(i=1)^(n) sin the...

    Text Solution

    |

  15. If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

    Text Solution

    |

  16. The most general values of 'x' for which sin x + cos x ="min"(a in R)...

    Text Solution

    |

  17. Find dy/dx if 2x+3y= siny

    Text Solution

    |

  18. If max{5sin theta+3sin(theta-alpha)}=7 then the set of possible vaues ...

    Text Solution

    |

  19. Find the number of integral value of n so that sinx(sinx+cosx)=n has a...

    Text Solution

    |

  20. Find the number of solutions to sin {x} = cos {x}, where {*} denotes t...

    Text Solution

    |