Home
Class 12
MATHS
If sec x cos 5x=-1 and 0 lt x lt (pi)/(...

If ` sec x cos 5x=-1 and 0 lt x lt (pi)/(4)`, then x is equal to

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec x \cos 5x = -1 \) for \( 0 < x < \frac{\pi}{4} \), we can follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ \sec x \cos 5x = -1 \] We know that \( \sec x = \frac{1}{\cos x} \), so we can rewrite the equation as: \[ \frac{\cos 5x}{\cos x} = -1 \] ### Step 2: Rearranging the equation Multiplying both sides by \( \cos x \) (noting that \( \cos x \neq 0 \) in the interval \( 0 < x < \frac{\pi}{4} \)): \[ \cos 5x = -\cos x \] ### Step 3: Bringing terms to one side Rearranging gives us: \[ \cos x + \cos 5x = 0 \] ### Step 4: Using the cosine addition formula We can use the formula for the sum of cosines: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] Setting \( a = x \) and \( b = 5x \), we have: \[ \cos x + \cos 5x = 2 \cos\left(\frac{x + 5x}{2}\right) \cos\left(\frac{x - 5x}{2}\right) = 2 \cos(3x) \cos(-2x) \] Since \( \cos(-\theta) = \cos(\theta) \), this simplifies to: \[ 2 \cos(3x) \cos(2x) = 0 \] ### Step 5: Setting each factor to zero This gives us two equations to solve: 1. \( \cos(3x) = 0 \) 2. \( \cos(2x) = 0 \) ### Step 6: Solving \( \cos(3x) = 0 \) The cosine function equals zero at odd multiples of \( \frac{\pi}{2} \): \[ 3x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] For \( n = 0 \): \[ 3x = \frac{\pi}{2} \implies x = \frac{\pi}{6} \] ### Step 7: Solving \( \cos(2x) = 0 \) Similarly, for \( \cos(2x) = 0 \): \[ 2x = \frac{\pi}{2} + m\pi \quad (m \in \mathbb{Z}) \] For \( m = 0 \): \[ 2x = \frac{\pi}{2} \implies x = \frac{\pi}{4} \] ### Step 8: Considering the interval We need to check which solutions fall within the interval \( 0 < x < \frac{\pi}{4} \): - From \( \cos(3x) = 0 \), we found \( x = \frac{\pi}{6} \) which is valid. - From \( \cos(2x) = 0 \), we found \( x = \frac{\pi}{4} \) which is not valid since we need \( x < \frac{\pi}{4} \). ### Final Answer Thus, the only solution in the interval \( 0 < x < \frac{\pi}{4} \) is: \[ \boxed{\frac{\pi}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If 0 lt x lt pi /2 then

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If 0 lt x lt pi/2 then

If -1 lt x lt 0 , then cos^(-1) x is equal to

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

Solve that following equations : sec x cos 5x+1=0, 0 lt x le pi/2 find the value of x

Lt_(x to pi)(sinx)/(x-pi) is equal to

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

If -1lt x lt 0 then tan^(-1) x equals

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. lambda cos x - 3 sinx=lambda +1 is solvabel for which value of λ .

    Text Solution

    |

  2. cos 2x- 3 cos x + 1=(1)/((cot 2 x - cot x)sin (x-pi)) holds , if

    Text Solution

    |

  3. If sec x cos 5x=-1 and 0 lt x lt (pi)/(4), then x is equal to

    Text Solution

    |

  4. If sin^(100) theta - cos^(100) theta =1 , then theta is

    Text Solution

    |

  5. If sqrt(3) sin x - cos x ="min"(alpha in R){2,e^(2),pi, alpha^(2)-4al...

    Text Solution

    |

  6. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  7. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  8. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  9. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  10. Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

    Text Solution

    |

  11. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  12. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  13. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  14. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  15. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  16. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  17. If sin (3alpha) /cos(2alpha) < 0 If alpha lies in A. (13pi//48,14pi...

    Text Solution

    |

  18. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  19. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  20. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |