Home
Class 12
MATHS
If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.....

If exp `[(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2]` satisfies the equation `y^(2)-9y+8=0`, then the value of `(cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2)` , is

A

`sqrt(3)+1 `

B

`(sqrt(3)-1)/(2)`

C

`sqrt(3)-1 `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript and break it down into clear steps: ### Step 1: Identify the Infinite Series We start with the expression: \[ \exp\left(\sum_{n=1}^{\infty} \sin^{2n} x\right) \ln 2 \] The series \( \sin^2 x + \sin^4 x + \sin^6 x + \ldots \) is a geometric series where the first term \( a = \sin^2 x \) and the common ratio \( r = \sin^2 x \). ### Step 2: Sum of the Infinite Series The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Thus, we have: \[ \sum_{n=1}^{\infty} \sin^{2n} x = \frac{\sin^2 x}{1 - \sin^2 x} = \frac{\sin^2 x}{\cos^2 x} = \tan^2 x \] ### Step 3: Substitute Back into the Exponential Now substituting back into the exponential: \[ \exp\left(\tan^2 x\right) \ln 2 \] ### Step 4: Let \( y = 2^{\tan^2 x} \) We can rewrite the expression as: \[ y = 2^{\tan^2 x} \] ### Step 5: Solve the Quadratic Equation We know that \( y \) satisfies the equation: \[ y^2 - 9y + 8 = 0 \] To find the roots of this quadratic equation, we can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -9, c = 8 \): \[ y = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1} = \frac{9 \pm \sqrt{81 - 32}}{2} = \frac{9 \pm \sqrt{49}}{2} = \frac{9 \pm 7}{2} \] Thus, the roots are: \[ y = 8 \quad \text{and} \quad y = 1 \] ### Step 6: Find \( \tan^2 x \) for Each Root 1. For \( y = 1 \): \[ 1 = 2^{\tan^2 x} \implies \tan^2 x = 0 \implies x = 0 \] (Not valid since \( 0 < x < \frac{\pi}{2} \)) 2. For \( y = 8 \): \[ 8 = 2^{\tan^2 x} \implies \tan^2 x = 3 \implies \tan x = \sqrt{3} \] Thus, \( x = \frac{\pi}{3} \). ### Step 7: Calculate the Desired Value We need to find: \[ \frac{\cos x}{\cos x + \sin x} \] Substituting \( x = \frac{\pi}{3} \): \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus: \[ \frac{\cos\left(\frac{\pi}{3}\right)}{\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right)} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{1 + \sqrt{3}}{2}} = \frac{1}{1 + \sqrt{3}} \] ### Final Answer The value of \( \frac{\cos x}{\cos x + \sin x} \) is: \[ \frac{1}{1 + \sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Statement -1:If e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] satisfie the equation x^(2)-9x +8=0 , "then " (cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum sin^(2) x + sin^(4)x + sin^(6) x + .... oo is equal to tan^(2)x

If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

The angle between the curves y=sin x and y = cos x, 0 lt x lt (pi) /(2) , is

The angle between the curves y=sin x and y = cos x, 0 lt x lt (pi)/(2) , is

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If x, y in [0, 2pi] and sin x + sin y=2 , then the value of x+y is

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  2. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  3. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  4. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  5. Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

    Text Solution

    |

  6. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  9. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  10. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  11. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  12. If sin (3alpha) /cos(2alpha) < 0 If alpha lies in A. (13pi//48,14pi...

    Text Solution

    |

  13. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  14. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  15. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  16. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  17. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  18. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  19. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |

  20. If |1-(|sin x |)/(1+ sin x )| ge (2)/(3), then sin x lies in

    Text Solution

    |