Home
Class 12
MATHS
x(1) and x(2) are two positive value of...

`x_(1) and x_(2)` are two positive value of x for which ` 2 cos x,|cos x| and 3 sin^(2) x-2` are in GP. The minimum value of ` |x_(1)-x_(2)|` is equal to

A

`(4pi)/(3)`

B

`(pi)/6`

C

`2 cos^(-1)""((2)/(3))`

D

`cos^(-1)""((2)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \(|x_1 - x_2|\) given that \(2 \cos x\), \(|\cos x|\), and \(3 \sin^2 x - 2\) are in geometric progression (GP). ### Step-by-Step Solution 1. **Understanding the GP Condition**: For three numbers \(a\), \(b\), and \(c\) to be in GP, the condition is: \[ b^2 = ac \] Here, let \(a = 2 \cos x\), \(b = |\cos x|\), and \(c = 3 \sin^2 x - 2\). 2. **Setting Up the Equation**: We can write the GP condition as: \[ |\cos x|^2 = (2 \cos x)(3 \sin^2 x - 2) \] 3. **Expressing \(\sin^2 x\)**: Recall that \(\sin^2 x = 1 - \cos^2 x\). Substituting this into the equation gives: \[ |\cos x|^2 = (2 \cos x)(3(1 - \cos^2 x) - 2) \] 4. **Simplifying the Equation**: Expanding the right-hand side: \[ |\cos x|^2 = 2 \cos x (3 - 3 \cos^2 x - 2) = 2 \cos x (1 - 3 \cos^2 x) \] This simplifies to: \[ |\cos x|^2 = 2 \cos x - 6 \cos^3 x \] 5. **Considering Cases for \(|\cos x|\)**: Since \(|\cos x| = \cos x\) when \(\cos x \geq 0\) and \(|\cos x| = -\cos x\) when \(\cos x < 0\), we will consider the case where \(\cos x \geq 0\) first. 6. **Rearranging the Equation**: Rearranging gives: \[ 6 \cos^3 x - 3 \cos x + 2 = 0 \] 7. **Factoring the Cubic Equation**: We can factor this cubic equation: \[ (3 \cos x + 2)(2 \cos^2 x - 1) = 0 \] This gives us two cases: - \(3 \cos x + 2 = 0 \Rightarrow \cos x = -\frac{2}{3}\) (not valid for positive \(x\)) - \(2 \cos^2 x - 1 = 0 \Rightarrow \cos^2 x = \frac{1}{2} \Rightarrow \cos x = \frac{1}{\sqrt{2}} = \frac{1}{2}\) (valid) 8. **Finding Values of \(x\)**: From \(\cos x = \frac{1}{2}\), we have: \[ x = \frac{\pi}{3} + 2k\pi \quad \text{and} \quad x = -\frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \] The positive solutions are: \[ x_1 = \frac{\pi}{3}, \quad x_2 = \frac{5\pi}{3} \] 9. **Calculating \(|x_1 - x_2|\)**: The minimum value of \(|x_1 - x_2|\) is: \[ |x_1 - x_2| = \left| \frac{\pi}{3} - \frac{5\pi}{3} \right| = \left| -\frac{4\pi}{3} \right| = \frac{4\pi}{3} \] 10. **Final Answer**: The minimum value of \(|x_1 - x_2|\) is: \[ \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be any two positve values of x for which 2 cos x, | cos x| and 1-3 cos^(2)x are in GP. The minium value of |alpha+beta| is

Let alpha, beta be any two positive values of x for which 2"cos"x, |"cos"x| " and " 1-3"cos"^(2) x are in G.P. The minimum value of |alpha -beta| , is

Write the values of x in [0,pi] for which sin2x ,1/2 and cos2x are in AP

Find the minimum value of 2^("sin" x) + 2^("cos" x)

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  2. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  3. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  4. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  5. Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

    Text Solution

    |

  6. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  9. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  10. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  11. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  12. If sin (3alpha) /cos(2alpha) < 0 If alpha lies in A. (13pi//48,14pi...

    Text Solution

    |

  13. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  14. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  15. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  16. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  17. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  18. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  19. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |

  20. If |1-(|sin x |)/(1+ sin x )| ge (2)/(3), then sin x lies in

    Text Solution

    |