Home
Class 12
MATHS
The value of the determinants |{:(1,a,a^...

The value of the determinants `|{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}|` is zero if

A

` x = n pi `

B

`x = n pi //2 `

C

`x=(2n+1)pi//2`

D

`x=(1+a^(2))/(2a)n in I `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 & a & a^2 \\ \cos((n-1)x) & \cos(nx) & \cos((n+1)x) \\ \sin((n-1)x) & \sin(nx) & \sin((n+1)x) \end{vmatrix} \] we need to find the values of \(x\) for which \(D = 0\). ### Step 1: Substitute \(n = 1\) To simplify the determinant, we can set \(n = 1\): \[ D = \begin{vmatrix} 1 & a & a^2 \\ \cos(0) & \cos(x) & \cos(2x) \\ \sin(0) & \sin(x) & \sin(2x) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & \cos(x) & \cos(2x) \\ 0 & \sin(x) & \sin(2x) \end{vmatrix} \] ### Step 2: Use the identity for \(\sin(2x)\) Using the identity \(\sin(2x) = 2\sin(x)\cos(x)\), we can rewrite the determinant: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & \cos(x) & \cos(2x) \\ 0 & \sin(x) & 2\sin(x)\cos(x) \end{vmatrix} \] ### Step 3: Factor out \(\sin(x)\) We can factor \(\sin(x)\) from the third row: \[ D = \sin(x) \begin{vmatrix} 1 & a & a^2 \\ 1 & \cos(x) & \cos(2x) \\ 0 & 1 & 2\cos(x) \end{vmatrix} \] ### Step 4: Expand the determinant Now we expand the determinant: \[ D = \sin(x) \left[ 1 \cdot \begin{vmatrix} \cos(x) & \cos(2x) \\ 1 & 2\cos(x) \end{vmatrix} - a \cdot \begin{vmatrix} 1 & \cos(2x) \\ 0 & 2\cos(x) \end{vmatrix} + a^2 \cdot \begin{vmatrix} 1 & \cos(x) \\ 0 & 1 \end{vmatrix} \right] \] Calculating the 2x2 determinants, we get: \[ D = \sin(x) \left[ \cos(x) \cdot (2\cos(x)) - \cos(2x) - a \cdot (2\cos(x)) + a^2 \right] \] ### Step 5: Set the determinant to zero For the determinant to be zero, we have two cases: 1. \(\sin(x) = 0\) 2. The remaining determinant equals zero. ### Case 1: Solve \(\sin(x) = 0\) \(\sin(x) = 0\) gives us: \[ x = n\pi \quad (n \in \mathbb{Z}) \] ### Case 2: Solve the remaining determinant The remaining determinant simplifies to: \[ 2\cos^2(x) - \cos(2x) - 2a\cos(x) + a^2 = 0 \] Using the identity \(\cos(2x) = 2\cos^2(x) - 1\), we substitute: \[ 2\cos^2(x) - (2\cos^2(x) - 1) - 2a\cos(x) + a^2 = 0 \] This simplifies to: \[ 1 + a^2 - 2a\cos(x) = 0 \] Rearranging gives: \[ 2a\cos(x) = 1 + a^2 \quad \Rightarrow \quad \cos(x) = \frac{1 + a^2}{2a} \] ### Step 6: Find \(x\) Thus, we have: \[ x = \cos^{-1}\left(\frac{1 + a^2}{2a}\right) \] ### Final Solutions The values of \(x\) for which the determinant is zero are: 1. \(x = n\pi\) for integers \(n\) 2. \(x = \cos^{-1}\left(\frac{1 + a^2}{2a}\right)\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)| is independent of

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

then value of the expression sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) , x∈( π/2 ,π)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx

Solve cos x + cos 2x+...+ cos (nx) =n, n in N .

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  2. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  3. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  4. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  5. Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

    Text Solution

    |

  6. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  9. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  10. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  11. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  12. If sin (3alpha) /cos(2alpha) < 0 If alpha lies in A. (13pi//48,14pi...

    Text Solution

    |

  13. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  14. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  15. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  16. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  17. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  18. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  19. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |

  20. If |1-(|sin x |)/(1+ sin x )| ge (2)/(3), then sin x lies in

    Text Solution

    |