Home
Class 12
MATHS
If |1-(|sin x |)/(1+ sin x )| ge (2)/(3)...

If `|1-(|sin x |)/(1+ sin x )| ge (2)/(3)`, then sin x lies in

A

`(-oo,(-1)/(2)] cup [(1)/(2),oo)`

B

`(-(1)/(2),(1)/(2))`

C

`[-1,(-5)/(8)] cup [-(1)/(4),(1)/(2)]`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \left| 1 - \frac{|\sin x|}{1 + \sin x} \right| \geq \frac{2}{3} \), we will break it down into cases based on the value of \( \sin x \). ### Step 1: Case 1 - \( \sin x \geq 0 \) In this case, \( |\sin x| = \sin x \). Therefore, we rewrite the inequality as: \[ \left| 1 - \frac{\sin x}{1 + \sin x} \right| \geq \frac{2}{3} \] This simplifies to: \[ 1 - \frac{\sin x}{1 + \sin x} \geq \frac{2}{3} \] ### Step 2: Solve the inequality To eliminate the absolute value, we can directly solve: \[ 1 - \frac{\sin x}{1 + \sin x} \geq \frac{2}{3} \] Subtracting 1 from both sides gives: \[ -\frac{\sin x}{1 + \sin x} \geq -\frac{1}{3} \] Multiplying through by -1 (which reverses the inequality): \[ \frac{\sin x}{1 + \sin x} \leq \frac{1}{3} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ 3\sin x \leq 1 + \sin x \] Rearranging this results in: \[ 2\sin x \leq 1 \implies \sin x \leq \frac{1}{2} \] ### Step 4: Combine with the condition Since we assumed \( \sin x \geq 0 \), we have: \[ 0 \leq \sin x \leq \frac{1}{2} \] ### Step 5: Case 2 - \( \sin x < 0 \) In this case, \( |\sin x| = -\sin x \). The inequality becomes: \[ \left| 1 + \frac{\sin x}{1 + \sin x} \right| \geq \frac{2}{3} \] This simplifies to: \[ 1 + \frac{\sin x}{1 + \sin x} \leq -\frac{2}{3} \] ### Step 6: Solve this inequality This leads to: \[ \frac{\sin x}{1 + \sin x} \leq -\frac{5}{3} \] This inequality will not hold since \( \sin x \) is negative and \( 1 + \sin x \) is also positive (as \( \sin x < 0 \) implies \( 1 + \sin x < 1 \)). Thus, we will consider another approach. ### Step 7: Break into subcases 1. **Subcase 2a**: \( 1 + 2\sin x \geq 0 \) Here, we can write: \[ 1 + 2\sin x \geq \frac{2}{3}(1 + \sin x) \] Rearranging gives: \[ 2\sin x - \frac{2}{3}\sin x \geq \frac{2}{3} - 1 \] Simplifying yields: \[ \frac{4}{3}\sin x \geq -\frac{1}{3} \implies \sin x \geq -\frac{1}{4} \] Thus, we have: \[ -\frac{1}{4} \leq \sin x < 0 \] 2. **Subcase 2b**: \( 1 + 2\sin x < 0 \) Here, we have: \[ -1 - 2\sin x \geq \frac{2}{3}(1 + \sin x) \] Rearranging gives: \[ -3 - 6\sin x \geq 2 + 2\sin x \] Thus: \[ -8\sin x \leq 5 \implies \sin x \leq -\frac{5}{8} \] ### Step 8: Combine the results Now we combine the results from both cases: 1. From Case 1: \( 0 \leq \sin x \leq \frac{1}{2} \) 2. From Case 2a: \( -\frac{1}{4} \leq \sin x < 0 \) 3. From Case 2b: \( \sin x \leq -\frac{5}{8} \) ### Final Result Thus, the solution set for \( \sin x \) is: \[ \sin x \in \left[-1, -\frac{5}{8}\right) \cup \left[0, \frac{1}{2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|25 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|8 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

sin x sin 2x sin 3x

int sin x sin2x sin3x

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Find the number of solutions of the equations (sin x - 1)^(3) + (cos x - 1)^(3) + ( sin x)^(3) = ( 2 sin x + cos x - 2)^(3) in ( 0, 2 pi) .

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

int sin x .sin2x.sin3x dx

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (Single Option Correct Type Questions)
  1. The number of solutions of the equation cos 4x+6=7 cos 2x , when x ...

    Text Solution

    |

  2. The number of solutions of cot(5pi sin theta )=tan (5 pi cos theta ),...

    Text Solution

    |

  3. If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the ...

    Text Solution

    |

  4. The total number of solutions of cos x= sqrt(1- sin 2x) in [0, 2pi] is...

    Text Solution

    |

  5. Solve : cos 3x. Cos^(3)x+sin 3x.sin^(3)x=0

    Text Solution

    |

  6. Total number of solutions of sinx=(|x|)/(10) is equal to

    Text Solution

    |

  7. The number of all possible 5-tuples (a(1),a(2),a(3),a(4),a(5)) such th...

    Text Solution

    |

  8. x(1) and x(2) are two positive value of x for which 2 cos x,|cos x|...

    Text Solution

    |

  9. If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan...

    Text Solution

    |

  10. The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alph...

    Text Solution

    |

  11. The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n...

    Text Solution

    |

  12. If sin (3alpha) /cos(2alpha) < 0 If alpha lies in A. (13pi//48,14pi...

    Text Solution

    |

  13. If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin...

    Text Solution

    |

  14. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  15. If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

    Text Solution

    |

  16. If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different...

    Text Solution

    |

  17. If "cot"(alpha+beta=0, then "sin"(alpha+2beta can be -sinalpha (b) si...

    Text Solution

    |

  18. If : cot theta + cot((pi)/4 + theta) = 2, then : theta =

    Text Solution

    |

  19. If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))), then the valu...

    Text Solution

    |

  20. If |1-(|sin x |)/(1+ sin x )| ge (2)/(3), then sin x lies in

    Text Solution

    |