Home
Class 12
MATHS
If cos A sin(A-(pi)/6) is maximum , whe...

If ` cos A sin(A-(pi)/6)` is maximum , when the value of A is equal to `(pi)/(lambda )`, then the value of ` lambda ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that \( \cos A \sin\left(A - \frac{\pi}{6}\right) \) is maximized when \( A = \frac{\pi}{\lambda} \). ### Step-by-Step Solution: 1. **Write the expression**: We start with the expression given in the problem: \[ y = \cos A \sin\left(A - \frac{\pi}{6}\right) \] 2. **Use the sine subtraction formula**: We can expand \( \sin\left(A - \frac{\pi}{6}\right) \) using the sine subtraction formula: \[ \sin\left(A - \frac{\pi}{6}\right) = \sin A \cos\left(\frac{\pi}{6}\right) - \cos A \sin\left(\frac{\pi}{6}\right) \] Knowing that \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \) and \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \), we substitute these values: \[ \sin\left(A - \frac{\pi}{6}\right) = \sin A \cdot \frac{\sqrt{3}}{2} - \cos A \cdot \frac{1}{2} \] 3. **Substitute back into the expression**: Now substituting this back into our expression for \( y \): \[ y = \cos A \left( \sin A \cdot \frac{\sqrt{3}}{2} - \cos A \cdot \frac{1}{2} \right) \] Simplifying this gives: \[ y = \frac{\sqrt{3}}{2} \sin A \cos A - \frac{1}{2} \cos^2 A \] 4. **Use double angle identities**: We know that \( 2 \sin A \cos A = \sin(2A) \) and \( \cos^2 A = \frac{1 + \cos(2A)}{2} \). Thus: \[ y = \frac{\sqrt{3}}{4} \sin(2A) - \frac{1}{4}(1 + \cos(2A)) \] This simplifies to: \[ y = \frac{\sqrt{3}}{4} \sin(2A) - \frac{1}{4} - \frac{1}{4} \cos(2A) \] 5. **Combine terms**: To combine the terms, we can express it as: \[ y = \frac{1}{4} \left( \sqrt{3} \sin(2A) - \cos(2A) - 1 \right) \] 6. **Maximize the sine function**: The maximum value of \( \sin(2A) \) is 1. For \( y \) to be maximum, we need: \[ \sqrt{3} \sin(2A) - \cos(2A) = 1 \] This occurs when: \[ 2A - \frac{\pi}{6} = \frac{\pi}{2} \] Solving for \( 2A \): \[ 2A = \frac{\pi}{2} + \frac{\pi}{6} = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] Thus: \[ A = \frac{\pi}{3} \] 7. **Relate A to lambda**: We know that \( A = \frac{\pi}{\lambda} \). Setting these equal gives: \[ \frac{\pi}{\lambda} = \frac{\pi}{3} \] Cancelling \( \pi \) from both sides, we find: \[ \lambda = 3 \] ### Final Answer: The value of \( \lambda \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|2 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

If tan(picostheta) = cot(pisintheta) and cos(theta-(pi)/(4)) = pm(1)/(lambdasqrtmu) , then the value of lambda +mu is

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

Find the value of the following :- sin((pi)/(6))

The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

A transverse wave is described by the equatiion Y = Y_(0) sin 2pi (ft -x//lambda) . The maximum particle velocity is equal to four times the wave velocity if lambda = pi Y_(0) //4 lambda = pi Y_(0)//2 lambda = pi Y_(0) lambda = 2pi Y_(0)

16(costheta-cospi/8)(costheta-cos(3pi)/8)(costheta-cos(5pi)/8)(costheta-cos(7pi)/8)=lambdacos4theta, then the value of lambda is _____.

If lambda is the remainder when 2^("2021") is divided by 17, then the value of lambda must be equal to

Write the value of sin^(-1)(cos(pi/9)) .

If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) has a solution in [0, 2pi] , then the smallest value of lambda , is