Home
Class 12
MATHS
If tan(pi cos theta )= cot (pi sin thet...

If ` tan(pi cos theta )= cot (pi sin theta ) ` ,then ` cos^(2)(theta -pi//4) ` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\pi \cos \theta) = \cot(\pi \sin \theta) \) and find the value of \( \cos^2\left(\theta - \frac{\pi}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \tan(\pi \cos \theta) = \cot(\pi \sin \theta) \] We know that \( \cot x = \frac{1}{\tan x} \), so we can rewrite the equation as: \[ \tan(\pi \cos \theta) = \frac{1}{\tan(\pi \sin \theta)} \] This implies: \[ \tan(\pi \cos \theta) \tan(\pi \sin \theta) = 1 \] ### Step 2: Use the Identity Using the identity \( \tan A \tan B = 1 \) leads us to: \[ \pi \cos \theta + \pi \sin \theta = \frac{\pi}{2} + n\pi \quad \text{for some integer } n \] This can be simplified to: \[ \cos \theta + \sin \theta = \frac{1}{2} + \frac{n}{\pi} \] ### Step 3: Solve for \( \cos \theta + \sin \theta \) We can express \( \cos \theta + \sin \theta \) in terms of a single cosine function: \[ \cos \theta + \sin \theta = \sqrt{2} \cos\left(\theta - \frac{\pi}{4}\right) \] Thus, we have: \[ \sqrt{2} \cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2} + \frac{n}{\pi} \] ### Step 4: Isolate \( \cos\left(\theta - \frac{\pi}{4}\right) \) Dividing both sides by \( \sqrt{2} \): \[ \cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}} + \frac{n}{\sqrt{2}\pi} \] ### Step 5: Find \( \cos^2\left(\theta - \frac{\pi}{4}\right) \) Now, we need to find \( \cos^2\left(\theta - \frac{\pi}{4}\right) \): \[ \cos^2\left(\theta - \frac{\pi}{4}\right) = \left(\frac{1}{2\sqrt{2}} + \frac{n}{\sqrt{2}\pi}\right)^2 \] Calculating this gives: \[ \cos^2\left(\theta - \frac{\pi}{4}\right) = \left(\frac{1}{2\sqrt{2}}\right)^2 = \frac{1}{8} \] ### Final Answer Thus, the value of \( \cos^2\left(\theta - \frac{\pi}{4}\right) \) is: \[ \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|2 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 theta is equal to

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If : cot theta + cot((pi)/4 + theta) = 2 , then : theta =

If pi < theta < (3pi)/(2) and cos theta = -3/5 , then tan ((theta)/(4)) is equal to

The function f(theta) = cos (pi sin^(2) theta) , is

If theta in [4 pi, 5pi] then cos^(-1)(cos theta) equals

Solve: tan4theta=-cot(pi/6+theta)