Home
Class 12
MATHS
If 3sinx+4cosx=5, then the value of 90ta...

If `3sinx+4cosx=5`, then the value of `90tan^2(x/2)-60tan(x/2)+10` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3\sin x + 4\cos x = 5\) and find the value of \(90\tan^2\left(\frac{x}{2}\right) - 60\tan\left(\frac{x}{2}\right) + 10\), we will follow these steps: ### Step 1: Rewrite sine and cosine in terms of tangent Using the formulas: \[ \sin x = \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] ### Step 2: Substitute into the equation Substituting these into the equation: \[ 3\left(\frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) + 4\left(\frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}\right) = 5 \] ### Step 3: Combine the terms This simplifies to: \[ \frac{6\tan\left(\frac{x}{2}\right) + 4 - 4\tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} = 5 \] ### Step 4: Clear the denominator Multiplying both sides by \(1 + \tan^2\left(\frac{x}{2}\right)\): \[ 6\tan\left(\frac{x}{2}\right) + 4 - 4\tan^2\left(\frac{x}{2}\right) = 5 + 5\tan^2\left(\frac{x}{2}\right) \] ### Step 5: Rearrange the equation Rearranging gives: \[ -4\tan^2\left(\frac{x}{2}\right) - 5\tan^2\left(\frac{x}{2}\right) + 6\tan\left(\frac{x}{2}\right) + 4 - 5 = 0 \] \[ -9\tan^2\left(\frac{x}{2}\right) + 6\tan\left(\frac{x}{2}\right) - 1 = 0 \] ### Step 6: Multiply through by -1 To simplify, we multiply through by -1: \[ 9\tan^2\left(\frac{x}{2}\right) - 6\tan\left(\frac{x}{2}\right) + 1 = 0 \] ### Step 7: Solve the quadratic equation Let \(t = \tan\left(\frac{x}{2}\right)\): \[ 9t^2 - 6t + 1 = 0 \] Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 9 \cdot 1}}{2 \cdot 9} = \frac{6 \pm \sqrt{36 - 36}}{18} = \frac{6}{18} = \frac{1}{3} \] ### Step 8: Substitute back to find the value Now substituting \(t = \frac{1}{3}\) back into the expression we need to evaluate: \[ 90\tan^2\left(\frac{x}{2}\right) - 60\tan\left(\frac{x}{2}\right) + 10 \] Substituting \(t\): \[ 90\left(\frac{1}{3}\right)^2 - 60\left(\frac{1}{3}\right) + 10 = 90 \cdot \frac{1}{9} - 20 + 10 = 10 - 20 + 10 = 0 \] ### Final Answer Thus, the value of \(90\tan^2\left(\frac{x}{2}\right) - 60\tan\left(\frac{x}{2}\right) + 10\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|6 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|2 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to 0 (b) 1 (c) 2 (d) 3

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

The value of "tan"5A-"tan"3A-"tan"2A is equal to

inttanx tan 2x tan 3x dx is equal to

If 0 lt x lt 5/4 and cosx+sinx=5/4 then the value of 16(cosx-sinx)^2 is

If cos x-(cot beta sinx )/( 2 )=sqrt(3)/(2) , then the value of tan""(x)/(2) is A. tan""(beta)/(2) tan 15^(@) B. tan""(beta)/(2) C. tan 15^(@) D. None of these

If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is