Home
Class 12
MATHS
The possible values of theta in (0,pi) s...

The possible values of `theta in (0,pi)` such that `sin (theta) + sin (4theta) + sin(7theta) = 0` are (1) `(2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9` (2) `pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9` (3) `(2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36` (4) `(2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9`

A

`(2pi)/(9),(pi)/(4),(4pi)/(9),(pi)/(2),(3pi)/(4),(8pi)/(9)`

B

`(pi)/(4),(5pi)/(12),(pi)/(2),(2pi)/(3),(3pi)/(4),(8pi)/(9)`

C

`(2pi)/(9),(pi)/(4),(pi)/(2),(2pi)/(3),(3pi)/(4),(35pi)/(36)`

D

`(2pi)/(9),(pi)/(4),(pi)/(2),(2pi)/(3),(3pi)/(4),(8pi)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\theta) + \sin(4\theta) + \sin(7\theta) = 0 \) for \( \theta \) in the interval \( (0, \pi) \), we can follow these steps: ### Step 1: Rearranging the Equation We can rearrange the equation as follows: \[ \sin(7\theta) + \sin(\theta) + \sin(4\theta) = 0 \] ### Step 2: Using the Sine Addition Formula Using the sine addition formula, we can combine terms. We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] We can apply this to \( \sin(7\theta) + \sin(\theta) \): \[ \sin(7\theta) + \sin(\theta) = 2 \sin\left(\frac{7\theta + \theta}{2}\right) \cos\left(\frac{7\theta - \theta}{2}\right) = 2 \sin(4\theta) \cos(3\theta) \] Thus, we rewrite the equation as: \[ 2 \sin(4\theta) \cos(3\theta) + \sin(4\theta) = 0 \] ### Step 3: Factoring the Equation Factoring out \( \sin(4\theta) \): \[ \sin(4\theta)(2 \cos(3\theta) + 1) = 0 \] ### Step 4: Solving Each Factor Now we solve each factor separately. #### Factor 1: \( \sin(4\theta) = 0 \) The sine function is zero at integer multiples of \( \pi \): \[ 4\theta = n\pi \quad \text{for } n = 0, 1, 2, \ldots \] This gives: \[ \theta = \frac{n\pi}{4} \] For \( n = 1, 2, 3, 4 \), we find: - \( n = 1 \): \( \theta = \frac{\pi}{4} \) - \( n = 2 \): \( \theta = \frac{\pi}{2} \) - \( n = 3 \): \( \theta = \frac{3\pi}{4} \) - \( n = 4 \): \( \theta = \pi \) (not in the interval \( (0, \pi) \)) #### Factor 2: \( 2 \cos(3\theta) + 1 = 0 \) Solving for \( \cos(3\theta) \): \[ \cos(3\theta) = -\frac{1}{2} \] The cosine function is \( -\frac{1}{2} \) at: \[ 3\theta = \frac{2\pi}{3} + 2k\pi \quad \text{and} \quad 3\theta = \frac{4\pi}{3} + 2k\pi \] This gives: \[ \theta = \frac{2\pi}{9} + \frac{2k\pi}{3} \quad \text{and} \quad \theta = \frac{4\pi}{9} + \frac{2k\pi}{3} \] For \( k = 0 \): - \( \theta = \frac{2\pi}{9} \) - \( \theta = \frac{4\pi}{9} \) For \( k = 1 \): - \( \theta = \frac{2\pi}{9} + \frac{2\pi}{3} = \frac{2\pi}{9} + \frac{6\pi}{9} = \frac{8\pi}{9} \) ### Step 5: Collecting All Solutions The solutions in the interval \( (0, \pi) \) are: - From \( \sin(4\theta) = 0 \): \( \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4} \) - From \( 2\cos(3\theta) + 1 = 0 \): \( \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9} \) ### Final Step: Listing All Values Thus, the possible values of \( \theta \) in \( (0, \pi) \) are: \[ \theta = \frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{4\pi}{9}, \frac{8\pi}{9} \] ### Conclusion The correct option that matches these values is: **Option 4: \( \frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9} \)**
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|23 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

The range of values of theta epsilon [ 0, 2pi] for which (1+ sin theta, 1 + cos theta) lies inside the circle x^2 + y^2 = 1 , is : (A) (0, pi) (B) (5pi/4, 7pi/4) (C) (pi, 3pi/2) (D) (3pi/2, 2pi)

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

For 0 cos^(-1)(sintheta) is true when theta belongs to (a) (pi/4,pi) (b) (pi,(3pi)/2) (c) (pi/4,(3pi)/4) (d) ((3pi)/4,2pi)

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

A value of theta satisfying costheta+sqrt(3)\ sin theta=2 is a. (5pi)/3 b. (4pi)/3 c. (2pi)/3 d. pi/3

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

A solution of the equation cos^2theta+sintheta+1=0 lies in the interval a. (-pi//4,pi//4) b. (pi//4,3pi//4) c. (3pi//4,5pi//4) d. (5pi//4,7pi//4)

If costheta+sqrt(3)sintheta=2, then theta= a. pi//3 b. 2pi//3 c. 4pi//3 d. 5pi//3