Home
Class 12
MATHS
Evaluate. (i) i^(1998) (ii) i^(-9999...

Evaluate.
(i) `i^(1998)`
(ii)` i^(-9999)`
(iii) `(-sqrt-1)^(4n=3)`,n `ne` N

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3) , n in N (iv) sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9)

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Find the value of n if: (i) (n+2)! = 12n! (ii) (n+2)! = 60(n-1)! (iii) (n+3)! = 2550 (n+1)! (iv) (n-2)! = 132. (n-4)! .

The nth term of a sequence in defined as follows. Find the first four terms : (i) a_(n)=3n+1 " " (ii) a_(n)=n^(2)+3 " " (iii) a_(n)=n(n+1) " " (iv) a_(n)=n+(1)/(n) " " (v) a_(n)=3^(n)

Find the sum of the n terms of the series whose nth term are given below : (i) 3n^(2)+2n (ii) 2n^(3)+4n+1 (iii) 2^(n)+3^(n) (iv) 3^(n)+n^(3)

The value of 1+i+i^(2)+... + i^(n) is (i) positive (ii) negative (iii) 0 (iv) cannot be determined

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0