Home
Class 12
MATHS
If a=(1+i)/sqrt2," where "i=sqrt(-1), th...

If `a=(1+i)/sqrt2," where "i=sqrt(-1),` then find the value of `a^(1929)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

If z=(1+i)/sqrt2 , then the value of z^1929 is

If x= -2 - sqrt3i , where i= sqrt(-1 , find the value of 2x^(4) + 5x^(3) + 7x^(2)-x+ 41

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

Let x-1/x=(sqrt2)i where i=sqrt(-1) . Then the value of x^(2187)-1/x^(2187) is :

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

g(x)=asqrt(41-x^(2)) Function g is defined by the equation above where a is a nonzero real constant. If g(2i)=sqrt(5) , where i=sqrt(-1) , what is the value of a?

If a=(1+i)/sqrt(2) find the value of a^6+a^4+a^2+1

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to