Home
Class 12
MATHS
The value of sum(n=0)^(100)i^(n!) equals...

The value of `sum_(n=0)^(100)i^(n!)` equals (where `i=sqrt(-1))`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

sqrt((-8-6i)) is equal to (where, i=sqrt(-1)

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot