Home
Class 12
MATHS
Find he value of sum(r=1)^(4n+7)\ i^r wh...

Find he value of `sum_(r=1)^(4n+7)\ i^r` where, `i=sqrt(- 1).`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

Find the sum sum_(r=1)^n r/(r+1)!

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If n is a positive integer and C_r = ""^nC_r then find the value of sum_(x = 1)^n r^2 ((C_r)/(C_(r - 1)) )