Home
Class 12
MATHS
A complex number z is said to be unimodu...

A complex number z is said to be unimodular if `|z|=1` Suppose `z_(1)` and `z_(2)` are complex number such that `(z_91)-2z_(2))/(2-z_(1)barz_(2))` is unimodular and `z_(2)` is non-unimodular. Then the poit `z_(1)` lies on a.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

A complex number z is said to be unimodular if abs(z)=1 . Suppose z_(1) and z_(2) are complex numbers such that (z_(1)-2z_(2))/(2-z_(1)z_(2)^_) is unimodular and z_(2) is not unimodular. Then the point z_(1) lies on a

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_1 and z_2 are two complex numbers such that (z_1-2z_2)/(2-z_1bar(z_2)) is unimodular whereas z_1 is not unimodular then |z_1| =

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

If z_1,z_2 are two complex numbers such that Im(z_1+z_2)=0,Im(z_1z_2)=0 , then:

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then which one of the following is true?

Let z_(1),z_(2) be two complex numbers such that z_(1)+z_(2) and z_(1)z_(2) both are real, then

If z_(1) and z_(2) are two complex numbers satisying the equation. |(iz_(1)+z_(2))/(iz_(1)-z_(2))|=1 , then z_(1)/z_(2) is

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)