Home
Class 12
MATHS
The mirror image of the curve arg((z-3)/...

The mirror image of the curve `arg((z-3)/(z-i))=pi/6, i=sqrt(- 1)` in the real axis

A

`arg((z+3)/(z+i))=(pi)/(6)`

B

`arg((z-3)/(z+i))=(pi)/(6)`

C

`arg((z+i)/(z+3))=(pi)/(6)`

D

`arg((z+i)/(z-3))=(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mirror image of the curve defined by the equation \( \arg\left(\frac{z-3}{z-i}\right) = \frac{\pi}{6} \) in the real axis, we can follow these steps: ### Step 1: Understand the Given Curve The given equation represents a curve in the complex plane. The expression \( z \) can be represented as \( z = x + iy \), where \( x \) and \( y \) are the real and imaginary parts, respectively. ### Step 2: Set Up the Mirror Image The mirror image of a point \( z \) in the real axis is given by its complex conjugate \( \overline{z} \). Therefore, we can express the mirror image of the curve as: \[ \arg\left(\frac{\overline{z} - 3}{\overline{z} - i}\right) = \frac{\pi}{6} \] ### Step 3: Substitute the Conjugate Substituting \( \overline{z} = x - iy \) into the equation, we have: \[ \arg\left(\frac{(x - iy) - 3}{(x - iy) - i}\right) = \frac{\pi}{6} \] This simplifies to: \[ \arg\left(\frac{(x - 3) - iy}{(x) - (y + 1)i}\right) = \frac{\pi}{6} \] ### Step 4: Express the Argument The argument of a complex number \( \frac{a + bi}{c + di} \) can be expressed as: \[ \arg\left(\frac{a + bi}{c + di}\right) = \tan^{-1}\left(\frac{b}{a}\right) - \tan^{-1}\left(\frac{d}{c}\right) \] In our case, we can express the argument as: \[ \arg\left((x - 3) - iy\right) - \arg\left(x - (y + 1)i\right) = \frac{\pi}{6} \] ### Step 5: Solve for the Argument Calculating the arguments, we have: \[ \tan^{-1}\left(\frac{-y}{x - 3}\right) - \tan^{-1}\left(\frac{-(y + 1)}{x}\right) = \frac{\pi}{6} \] ### Step 6: Rearranging the Equation Rearranging gives us: \[ \tan^{-1}\left(\frac{-y}{x - 3}\right) = \tan^{-1}\left(\frac{-(y + 1)}{x}\right) + \frac{\pi}{6} \] ### Step 7: Final Form The final form of the equation represents the mirror image of the original curve in the real axis. ### Summary The mirror image of the curve \( \arg\left(\frac{z-3}{z-i}\right) = \frac{\pi}{6} \) in the real axis is given by: \[ \arg\left(\frac{\overline{z} - 3}{\overline{z} - i}\right) = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)

Find the locus of z if arg ((z-1)/(z+1))= pi/4

The least value of p for which the two curves argz=pi/6 and |z-2sqrt(3)i|=p intersect is

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

Let the complex numbers z of the form x+iy satisfy arg ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3 . Then the ordered pairs (x,y) are (A) (4- 4/sqrt(5), 1+2/sqrt(5)) (B) (4+5/sqrt(5),1-2/sqrt(5)) (C) (6-1) (D) (0,1)

If "Re"((z-8i)/(z+6))=0 , then z lies on the curve

If arg ((z-6-3i)/(z-3-6i))=pi/4 , then maximum value of |z| :

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to