Home
Class 12
MATHS
If |z-2i|lesqrt(2), where i=sqrt(-1), th...

If `|z-2i|lesqrt(2),` where `i=sqrt(-1),` then the maximum value of `|3-i(z-1)|,` is

A

`sqrt(2)`

B

`2sqrt(2)`

C

`2+sqrt(2)`

D

`3+2sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the maximum value of \( |3 - i(z - 1)| \) given that \( |z - 2i| \leq \sqrt{2} \). ### Step 1: Understand the given condition We are given that \( |z - 2i| \leq \sqrt{2} \). This represents a circle in the complex plane centered at \( 2i \) with a radius of \( \sqrt{2} \). ### Step 2: Express \( z \) in terms of real and imaginary parts Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. The condition becomes: \[ |x + (y - 2)i| \leq \sqrt{2} \] This can be rewritten as: \[ \sqrt{x^2 + (y - 2)^2} \leq \sqrt{2} \] Squaring both sides gives: \[ x^2 + (y - 2)^2 \leq 2 \] ### Step 3: Rewrite the expression we want to maximize We need to find the maximum value of: \[ |3 - i(z - 1)| = |3 - i((x + yi) - 1)| = |3 - i(x - 1 + yi)| \] This simplifies to: \[ |3 - i(x - 1) - y| = |(3 - y) - i(x - 1)| \] Thus, we can express this as: \[ \sqrt{(3 - y)^2 + (x - 1)^2} \] ### Step 4: Analyze the constraints We want to maximize \( \sqrt{(3 - y)^2 + (x - 1)^2} \) under the constraint \( x^2 + (y - 2)^2 \leq 2 \). ### Step 5: Find the maximum values of \( x \) and \( y \) To find the maximum value of \( \sqrt{(3 - y)^2 + (x - 1)^2} \), we can analyze the circle defined by \( x^2 + (y - 2)^2 = 2 \). 1. The center of the circle is at \( (0, 2) \) and the radius is \( \sqrt{2} \). 2. The maximum value of \( |3 - y| \) occurs when \( y \) is minimized. The minimum value of \( y \) on the circle occurs at \( y = 2 - \sqrt{2} \). 3. The maximum value of \( |x - 1| \) occurs when \( x \) is maximized. The maximum value of \( x \) on the circle occurs at \( x = \sqrt{2} \). ### Step 6: Substitute the maximum values Substituting \( y = 2 - \sqrt{2} \) and \( x = \sqrt{2} \) into the expression: \[ \sqrt{(3 - (2 - \sqrt{2}))^2 + (\sqrt{2} - 1)^2} \] This simplifies to: \[ \sqrt{(1 + \sqrt{2})^2 + (\sqrt{2} - 1)^2} \] ### Step 7: Calculate the expression Calculating \( (1 + \sqrt{2})^2 \): \[ (1 + \sqrt{2})^2 = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2} \] Calculating \( (\sqrt{2} - 1)^2 \): \[ (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] Now, adding these: \[ (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6 \] Thus, the maximum value is: \[ \sqrt{6} \] ### Final Answer The maximum value of \( |3 - i(z - 1)| \) is \( \sqrt{6} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE(Single integer answer type questions)|1 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

For a complex number Z, if |Z-i|le2 and Z_(1)=5+3i , then the maximum value of |iZ+Z_(1)| is (where, i^(2)=-1 )

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If z=(1+i)/sqrt2 , then the value of z^1929 is

If |z - 3+ 2i| leq 4 , (where i = sqrt-1 ) then the difference of greatest and least values of |z| is