Home
Class 12
MATHS
If(1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i...

If`(1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1)` for all those n, which are

A

even

B

odd

C

multiple of 3

D

None of these

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise for session 4|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise for session 5|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Subjective type Examples|5 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

Prove that sum_(r=0)^n^n C_r(-1)^r[i^r+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4), where i=sqrt(-1)dot

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Find the Lim_(nrarroo) ((""^(3n)C_(n))/(""^(2n)C_(n)))^(1/n) Where ""^(i)C_(j) is a binomial coefficient which means (i.(i-1)"…."(i-j+1))/(j.(j-1)"….."2.1)