Home
Class 12
MATHS
If i=sqrt(-1), the number of values of i...

If `i=sqrt(-1),` the number of values of `i^(-n)` for a different `n inI ` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise for session 4|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise for session 5|1 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Subjective type Examples|5 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

The value of i^n + i^-n

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Consider the nine digit number n = 7 3 alpha 4 9 6 1 beta 0. The number of possible values of beta for wich i^(N) = 1 ("where " i=sqrt-1) ,

Find the integral values of n for the equations : (a) (1+i)^(n)=(1-i)^(n)

The smallest positive integral value of n for which (1+sqrt3i)^(n/2) is real is

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

If n in NN , then find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) .