Home
Class 12
MATHS
If i z^4+1=0, then prove that z can take...

If `i z^4+1=0,` then prove that `z` can take the value `cospi//8+is inpi//8.`

A

`(1+i)/(sqrt(2))`

B

`cos""((pi)/(8))+isin""((pi)/(8))`

C

`(1)/(4i)`

D

`i`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|14 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|13 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If i z^4+1=0, then prove that z can take the value cospi//8+isinpi//8.

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

Prove that: 8cos^3pi/9-\ 6cospi/9=1.

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

Least value of |z-2|+|z-4i| is

If |z-1|+|z+3|<=8 , then the range of values of |z-4| is

Column I, Column II (one of the values of z ) z^4-1=0 , p. z=cospi/8+isinpi/8 z^4+1=0 , q. z=cospi/8-isinpi/8 i z^4+1=0 , r. z=cospi/4isinpi/4 i z^4-1=0 , s. z=cos0+isin0

Let complex number z satisfy |z - 2/z| =1 " then " |z| can take all values except

If z= 6+8i , verify that |z|= |bar(z)|

Match the statements in column-I with those I column-II [Note: Here z takes the values in the complex plane and I m(z)a n dR e(z) denote, respectively, the imaginary part and the real part of z ] Column I, Column II: The set of points z satisfying |z-i|z||-|z+i|z||=0 is contained in or equal to, p. an ellipse with eccentricity 4/5 The set of points z satisfying |z+4|+|z-4|=10 is contained in or equal to, q. the set of point z satisfying I m z=0 If |omega|=1, then the set of points z=omega+1//omega is contained in or equal to, r. the set of points z satisfying |I m z|lt=1 , s. the set of points z satisfying |R e z|lt=1 , t. the set of points z satisfying |z|lt=3