Home
Class 12
MATHS
If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) ...

If `|z-2-3i|+|z+2-6i|=4` where `i=sqrt(-1)` then find the locus of `P(z)`

A

an ellipse

B

`phi`

C

line segment of points `2+3i and-26i`

D

none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|15 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

If |z - 3+ 2i| leq 4 , (where i = sqrt-1 ) then the difference of greatest and least values of |z| is

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If the amplitude of z-2-3i " is " (pi)/(4) , then find the locus of z= x+ yi

If |z-3+ i|=4 , then the locus of z is