Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1)`, then a-b, is

A

prime number

B

even number

C

composite number

D

perfect number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( \sum_{n=1}^{25} i^{n!} \) and express it in the form \( a + ib \), where \( i = \sqrt{-1} \). Then, we will find \( a - b \). ### Step-by-Step Solution: 1. **Understanding the powers of \( i \)**: The powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and so on...) This means that \( i^{n} \) can be determined by \( n \mod 4 \). 2. **Finding \( n! \mod 4 \)**: We need to find \( n! \mod 4 \) for \( n = 1, 2, \ldots, 25 \): - For \( n = 1 \): \( 1! = 1 \mod 4 \) → \( i^{1!} = i \) - For \( n = 2 \): \( 2! = 2 \mod 4 \) → \( i^{2!} = -1 \) - For \( n = 3 \): \( 3! = 6 \mod 4 \) → \( i^{3!} = -i \) - For \( n = 4 \): \( 4! = 24 \mod 4 \) → \( i^{4!} = 1 \) - For \( n \geq 4 \): \( n! \) is always divisible by 4, so \( n! \mod 4 = 0 \) → \( i^{n!} = 1 \) 3. **Counting contributions from each \( n \)**: - For \( n = 1 \): contributes \( i \) - For \( n = 2 \): contributes \( -1 \) - For \( n = 3 \): contributes \( -i \) - For \( n = 4 \): contributes \( 1 \) - For \( n = 5 \) to \( n = 25 \) (21 terms): each contributes \( 1 \) 4. **Calculating the total sum**: \[ \text{Total contribution} = i + (-1) + (-i) + 1 + 21 \cdot 1 \] Simplifying this: - The imaginary parts: \( i - i = 0 \) - The real parts: \( -1 + 1 + 21 = 21 \) Thus, the total sum is: \[ 21 + 0i \] 5. **Identifying \( a \) and \( b \)**: From the sum \( 21 + 0i \), we have: - \( a = 21 \) - \( b = 0 \) 6. **Finding \( a - b \)**: \[ a - b = 21 - 0 = 21 \] ### Final Answer: The value of \( a - b \) is \( \boxed{21} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 5|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1) , then a+75b, is

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

If (1+i)^(2n)+(1-i)^(2n)=-2^(n+1)(where,i=sqrt(-1) for all those n, which are

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to