Home
Class 12
MATHS
Sum of four consecutive powers of i(iota...

Sum of four consecutive powers of i(iota) is zero.
i.e.,`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I.`
If `sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1)`, then a+75b, is

A

11

B

22

C

33

D

44

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=4}^{100} i^{r!} + \prod_{r=1}^{101} i^r \] where \( i = \sqrt{-1} \). ### Step 1: Evaluate the sum \(\sum_{r=4}^{100} i^{r!}\) The powers of \( i \) cycle every four terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and so on) To find \( i^{r!} \), we need to determine \( r! \mod 4 \). #### Step 1.1: Calculate \( r! \mod 4 \) For \( r \geq 4 \): - \( 4! = 24 \equiv 0 \mod 4 \) - \( 5! = 120 \equiv 0 \mod 4 \) - \( 6! = 720 \equiv 0 \mod 4 \) - And this continues for all \( r \geq 4 \). Thus, for all \( r \) from 4 to 100, \( r! \equiv 0 \mod 4 \). #### Step 1.2: Substitute into the sum Since \( r! \equiv 0 \mod 4 \), we have: \[ i^{r!} = i^0 = 1 \] The sum becomes: \[ \sum_{r=4}^{100} i^{r!} = \sum_{r=4}^{100} 1 = 100 - 4 + 1 = 97 \] ### Step 2: Evaluate the product \(\prod_{r=1}^{101} i^r\) Using the property of exponents: \[ \prod_{r=1}^{101} i^r = i^{\sum_{r=1}^{101} r} \] #### Step 2.1: Calculate the sum \(\sum_{r=1}^{101} r\) The sum of the first \( n \) natural numbers is given by: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] For \( n = 101 \): \[ \sum_{r=1}^{101} r = \frac{101 \times 102}{2} = 5151 \] #### Step 2.2: Substitute into the product Thus, we have: \[ \prod_{r=1}^{101} i^r = i^{5151} \] #### Step 2.3: Calculate \( 5151 \mod 4 \) Now, we need to find \( 5151 \mod 4 \): \[ 5151 \div 4 = 1287 \quad \text{(remainder 3)} \] Thus, \( 5151 \equiv 3 \mod 4 \). Therefore: \[ i^{5151} = i^3 = -i \] ### Step 3: Combine the results Now we combine the results from Step 1 and Step 2: \[ \sum_{r=4}^{100} i^{r!} + \prod_{r=1}^{101} i^r = 97 - i \] This can be expressed as: \[ a + ib \quad \text{where } a = 97 \text{ and } b = -1 \] ### Step 4: Calculate \( a + 75b \) Now we need to find: \[ a + 75b = 97 + 75(-1) = 97 - 75 = 22 \] ### Final Answer Thus, the final answer is: \[ \boxed{22} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 5|3 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

The value of sum_(r=-3)^(1003)i^(r)(where i=sqrt(-1)) is

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0