Home
Class 12
MATHS
If w=alpha+ibeta, where beta!=0 and z!=1...

If `w=alpha+ibeta,` where `beta!=0` and `z!=1` , satisfies the condition that `((w- bar w z)/(1-z))` is a purely real, then the set of values of `z` is `|z|=1,z!=2` (b) `|z|=1a n dz!=1` (c)`z=bar z ` (d) None of these

A

`{z:abs(z)=1}`

B

`{z:z=bar(z)}`

C

`{z:z ne 1}`

D

`{z:abs(z)=1,z ne 1}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 7|11 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If z satisfies |z+1| lt |z-2| , then w=3z+2+i

Find the locus of z if omega= (z)/(z- (1)/(3)i), |omega| =1

If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

If z=x+i y and w=(1-i z)//(z-i) and |w| = 1 , then show that z is purely real.

If z=x + yi and omega= (1-zi)/(z-i) show that |omega|=1 rArr z is purely real

ARIHANT MATHS ENGLISH-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If the cube roots of unity are 1,omega,omega^2, then the roots of the ...

    Text Solution

    |

  2. If omega = z//[z-(1//3)i] and |omega| = 1, then find the locus of z.

    Text Solution

    |

  3. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  4. Find the value of sum(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wher...

    Text Solution

    |

  5. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  6. A man walks a distance of 3 units from the origin towards the North-...

    Text Solution

    |

  7. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  8. If abs(z+4) le 3, the maximum value of abs(z+1) is

    Text Solution

    |

  9. Let A, B, C be three sets of complex number as defined below: A={z:Img...

    Text Solution

    |

  10. Let A,B and C be three sets of complex numbers as defined below: {:(,A...

    Text Solution

    |

  11. Express in the form of complex number i^9+i^(19)

    Text Solution

    |

  12. A particle P starts from the point z0=1+2i , where i=sqrt(-1) . It mov...

    Text Solution

    |

  13. If the conjugate of a complex numbers is 1/(i-1), where i=sqrt(-1). Th...

    Text Solution

    |

  14. Let z = x + iy be a complex number where x and y are integers. Then...

    Text Solution

    |

  15. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1...

    Text Solution

    |

  16. If |z-4/z|=2 then the greatest value of |z| is:

    Text Solution

    |

  17. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+tz(2...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If alpha and beta are the roots of the equation x^2"-"x""+""1""=""0 , ...

    Text Solution

    |

  20. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |