Home
Class 12
MATHS
If z^2+z+1=0 where z is a complex number...

If `z^2+z+1=0` where `z` is a complex number, then the value of `(z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2` is

A

18

B

54

C

6

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z^2 + z + 1 = 0 \) and find the value of \( (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + \ldots + (z^6 + \frac{1}{z^6})^2 \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ z^2 + z + 1 = 0 \] Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 1, c = 1 \): \[ z = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ z = \frac{-1 \pm i\sqrt{3}}{2} \] These roots can be represented as \( \omega \) and \( \omega^2 \), where \( \omega = e^{i\frac{\pi}{3}} \) and \( \omega^2 = e^{-i\frac{\pi}{3}} \). ### Step 2: Calculate \( z + \frac{1}{z} \) Using the property of \( z \): \[ z + \frac{1}{z} = z + \frac{1}{\frac{-1 \pm i\sqrt{3}}{2}} = z + \frac{2}{-1 \pm i\sqrt{3}} \] Multiplying numerator and denominator by the conjugate: \[ z + \frac{1}{z} = z + \frac{2(-1 \mp i\sqrt{3})}{(-1)^2 + (i\sqrt{3})^2} = z + \frac{2(-1 \mp i\sqrt{3})}{1 + 3} = z + \frac{-1 \mp i\sqrt{3}}{2} \] This simplifies to: \[ z + \frac{1}{z} = -1 \] ### Step 3: Calculate \( (z + \frac{1}{z})^2 \) Now we calculate: \[ (z + \frac{1}{z})^2 = (-1)^2 = 1 \] ### Step 4: Calculate \( z^2 + \frac{1}{z^2} \) Using the identity: \[ z^2 + \frac{1}{z^2} = (z + \frac{1}{z})^2 - 2 = 1 - 2 = -1 \] Then, \[ (z^2 + \frac{1}{z^2})^2 = (-1)^2 = 1 \] ### Step 5: Calculate \( z^3 + \frac{1}{z^3} \) Using the identity: \[ z^3 + \frac{1}{z^3} = (z + \frac{1}{z})(z^2 + \frac{1}{z^2}) - (z + \frac{1}{z}) = (-1)(-1) - (-1) = 1 + 1 = 2 \] Then, \[ (z^3 + \frac{1}{z^3})^2 = 2^2 = 4 \] ### Step 6: Continue for \( z^4, z^5, z^6 \) Following the same pattern: - \( z^4 + \frac{1}{z^4} = -1 \) leads to \( (z^4 + \frac{1}{z^4})^2 = 1 \) - \( z^5 + \frac{1}{z^5} = 2 \) leads to \( (z^5 + \frac{1}{z^5})^2 = 4 \) - \( z^6 + \frac{1}{z^6} = 1 \) leads to \( (z^6 + \frac{1}{z^6})^2 = 1 \) ### Step 7: Sum all the squares Now we sum up all the squares: \[ 1 + 1 + 4 + 1 + 4 + 1 = 12 \] ### Final Answer Thus, the value of \( (z + \frac{1}{z})^2 + (z^2 + \frac{1}{z^2})^2 + \ldots + (z^6 + \frac{1}{z^6})^2 \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 7|11 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

For complex number z,|z-1|+|z+1|=2, then z lies on

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_1,z_2 are two complex numbers such that Im(z_1+z_2)=0,Im(z_1z_2)=0 , then:

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

ARIHANT MATHS ENGLISH-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  2. Find the value of sum(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wher...

    Text Solution

    |

  3. If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+...

    Text Solution

    |

  4. A man walks a distance of 3 units from the origin towards the North-...

    Text Solution

    |

  5. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  6. If abs(z+4) le 3, the maximum value of abs(z+1) is

    Text Solution

    |

  7. Let A, B, C be three sets of complex number as defined below: A={z:Img...

    Text Solution

    |

  8. Let A,B and C be three sets of complex numbers as defined below: {:(,A...

    Text Solution

    |

  9. Express in the form of complex number i^9+i^(19)

    Text Solution

    |

  10. A particle P starts from the point z0=1+2i , where i=sqrt(-1) . It mov...

    Text Solution

    |

  11. If the conjugate of a complex numbers is 1/(i-1), where i=sqrt(-1). Th...

    Text Solution

    |

  12. Let z = x + iy be a complex number where x and y are integers. Then...

    Text Solution

    |

  13. Let z=costheta+isintheta. Then the value of sum(m->1-15)Img(z^(2m-1...

    Text Solution

    |

  14. If |z-4/z|=2 then the greatest value of |z| is:

    Text Solution

    |

  15. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+tz(2...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If alpha and beta are the roots of the equation x^2"-"x""+""1""=""0 , ...

    Text Solution

    |

  18. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  19. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  20. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |