Home
Class 12
MATHS
Let omega ne 1 be a complex cube root of...

Let `omega ne 1` be a complex cube root of unity. If `(3-3omega+2omega^(2))^(4n+3) + (2+3omega-3omega^(2))^(4n+3)+(-3+2omega+3omega^(2))^(4n+3)=0`, then the set of possible value(s) of n is are

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (3 - 3\omega + 2\omega^2)^{4n+3} + (2 + 3\omega - 3\omega^2)^{4n+3} + (-3 + 2\omega + 3\omega^2)^{4n+3} = 0 \] where \(\omega\) is a complex cube root of unity (with \(\omega \neq 1\)), we will follow these steps: ### Step 1: Simplify the Terms Recall that the properties of cube roots of unity are: 1. \(\omega^3 = 1\) 2. \(1 + \omega + \omega^2 = 0\) Using these properties, we can simplify the terms in the equation. ### Step 2: Analyze Each Term Let's denote: - \(A = 3 - 3\omega + 2\omega^2\) - \(B = 2 + 3\omega - 3\omega^2\) - \(C = -3 + 2\omega + 3\omega^2\) We need to analyze \(A\), \(B\), and \(C\). #### For \(A\): \[ A = 3 - 3\omega + 2\omega^2 \] #### For \(B\): \[ B = 2 + 3\omega - 3\omega^2 \] #### For \(C\): \[ C = -3 + 2\omega + 3\omega^2 \] ### Step 3: Substitute and Simplify We can express \(B\) and \(C\) in terms of \(A\) using the properties of \(\omega\). After substituting and simplifying, we find that: \[ B = -\omega A \] \[ C = -\omega^2 A \] ### Step 4: Substitute Back into the Equation Now substituting these into the original equation gives: \[ A^{4n+3} + (-\omega A)^{4n+3} + (-\omega^2 A)^{4n+3} = 0 \] This simplifies to: \[ A^{4n+3} + (-1)^{4n+3} \omega^{4n+3} A^{4n+3} + (-1)^{4n+3} \omega^{2(4n+3)} A^{4n+3} = 0 \] ### Step 5: Factor Out \(A^{4n+3}\) Factoring out \(A^{4n+3}\) gives: \[ A^{4n+3} \left(1 + (-1)^{4n+3} \omega^{4n+3} + (-1)^{4n+3} \omega^{2(4n+3)}\right) = 0 \] ### Step 6: Solve the Inner Equation The inner equation must equal zero: \[ 1 + (-1)^{4n+3} \omega^{4n+3} + (-1)^{4n+3} \omega^{2(4n+3)} = 0 \] ### Step 7: Analyze the Conditions Since \((-1)^{4n+3} = -1\) for all integers \(n\), we can rewrite: \[ 1 - \omega^{4n+3} - \omega^{2(4n+3)} = 0 \] Using the property \(1 + \omega + \omega^2 = 0\), we can analyze the values of \(n\). ### Step 8: Check Values of \(n\) We need to check for which values of \(n\) the equation holds: 1. For \(n = 1\): \(1 + \omega + \omega^2 = 0\) (True) 2. For \(n = 2\): \(1 + \omega^8 + \omega^{4} = 0\) (True) 3. For \(n = 3\): \(1 + \omega^{12} + \omega^{6} = 3 \neq 0\) (False) 4. For \(n = 4\): \(1 + \omega^{16} + \omega^{8} = 0\) (True) ### Conclusion The possible values of \(n\) that satisfy the equation are: \[ n = 1, 2, 4 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 7|11 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Match the statements/expressions given in column I with the values given in Column II. Column I, Column II In R^2, if the magnitude of the projection vector of the vector alpha hat i+beta hat j on sqrt(3) hat i+ hat ji ssqrt(3) and if |alpha| is /are, (p) 1 Let aa n db be real numbers such that the function f(x)={-3a x^2-2,x<1b x+a^2, xgeq1 Differentiable for all x in Rdot Then possible value (s) of a is/are, (q) 2 Let omega!=1 be a complex cube root of unity. If (3-3omega+2omega^2)^(4n+3)+(2+3omega-3omega^2)^(4n+3)+(-3-2omega+3omega^2)^(4n+3)=0 , then possible values (s) of n is /are, (r) 3 Let the harmonic mean of two positive real numbers aa n db be 4. If q is a positive real number such that a ,5,q ,b is an arithmetic progressin, then the values (s)of|q-a| is /are, (s) 4 , (t) 5

Match the statements/expressions given in Column 1 with the values given in Column II. Column I, Column II In R^2, iff the magnitude of the projection vector of the vector alpha hat i+beta hat jon3 hat i+ hat ji s3 and if alpha=2+3beta , then possible value (s) of |alpha| is (are), p. 1 Let aa n db be real numbers such that the function f(x)={-3a x^2-2, x<1b x+a^2, xgeq1 is Differentiable for all x in Rdot Then possible value (s) of a is(are), q. 2 Let omega!=1 be a complex cube root of unit. If (3-3omega+2omega^2)^(4n)+(2+3omega-3omega^2)^(4n+3)+(-3+2omega+3omega^2)^(4n+3)=0 , then possible value (s) of n is (are), r. 3 Let the harmonic mean of two positive real numbers aa n db be 4. If q is a positive real number such tht a ,5,q ,b is an arithmetic progression, then the value (s) of |q-a| is (are), s. 4 , t 5

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

If omega is a non-real complex cube root of unity and (5+3omega^2-5omega)^(4n+3)+(5omega+3-5omega^2)^(4n+3)+(5omega^2+3omega-5)^(4n+3)=0, then possible value of n is

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a cube root of unity, then omega + omega^(2)= …..

Let omega ne 1 be a complex cube root of unity. If ( 4 + 5 omega + 6 omega ^(2)) ^(n^(2) + 2) + ( 6 + 5omega^(2) + 4 omega ) ^(n ^(2) + 2) + ( 5+ 6 omega + 4 omega ^(2) ) ^( n ^(2) + 2 ) = 0 , and n in N , where n in [1, 100] , then number of values of n is _______.

If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

ARIHANT MATHS ENGLISH-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  2. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  3. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  6. If omega is a cube root of unity and (1+omega)^7=A+Bomega then find th...

    Text Solution

    |

  7. Let z be a complex number such that the imaginary part of z is nonz...

    Text Solution

    |

  8. If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the...

    Text Solution

    |

  9. If z is complex number of unit modulus and argument theta then arg ...

    Text Solution

    |

  10. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2+(y-y0)^2...

    Text Solution

    |

  11. Let w = (sqrt 3/2 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Furthe...

    Text Solution

    |

  12. Express in the form of complex number if z=i^(-39)

    Text Solution

    |

  13. Express in the form of complex number (1-i)^4

    Text Solution

    |

  14. If z is a complex number such that |z|geq2 , then the minimum value...

    Text Solution

    |

  15. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  16. Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2...

    Text Solution

    |

  17. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  18. A value of theta for which (2+3i sin theta)/(1-2i sintheta) purely ima...

    Text Solution

    |

  19. Let 0 ne a, 0 ne b in R. Suppose S={z in C, z=1/(a+ibt)t in R, t ne ...

    Text Solution

    |

  20. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3). I...

    Text Solution

    |