Home
Class 12
MATHS
Let omega be a complex number such that ...

Let `omega` be a complex number such that `2omega+1=z` where `z=sqrt(-3)`. If `|{:(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))|=3k`, then k is equal to

A

1

B

`-z`

C

z

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript and break down the solution into clear steps. ### Step 1: Find the value of \( \omega \) We are given that \( z = \sqrt{-3} \). We can rewrite this as: \[ z = i\sqrt{3} \] where \( i = \sqrt{-1} \). Next, we know that: \[ 2\omega + 1 = z \] Substituting the value of \( z \): \[ 2\omega + 1 = i\sqrt{3} \] Now, we can solve for \( \omega \): \[ 2\omega = i\sqrt{3} - 1 \] \[ \omega = \frac{i\sqrt{3} - 1}{2} \] ### Step 2: Write the determinant The determinant we need to evaluate is: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} \] We know that \( \omega^3 = 1 \), so \( \omega^7 = \omega \). Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix} \] ### Step 3: Simplify the determinant We can perform column operations on the determinant. We will add the first column to the second and third columns: \[ D = \begin{vmatrix} 1 & 1 + 1 & 1 + 1 \\ 1 & -\omega^2 & \omega^2 + 1 \\ 1 & \omega^2 + 1 & \omega + 1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & 2 & 2 \\ 1 & -\omega^2 & \omega^2 + 1 \\ 1 & \omega^2 + 1 & \omega + 1 \end{vmatrix} \] ### Step 4: Calculate the determinant Now we can calculate the determinant using expansion: \[ D = 1 \cdot \begin{vmatrix} -\omega^2 & \omega^2 + 1 \\ \omega^2 + 1 & \omega + 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & \omega^2 + 1 \\ 1 & \omega + 1 \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} -\omega^2 & \omega^2 + 1 \\ \omega^2 + 1 & \omega + 1 \end{vmatrix} = -\omega^2(\omega + 1) - (\omega^2 + 1)(\omega^2) \] Calculating the second determinant: \[ \begin{vmatrix} 1 & \omega^2 + 1 \\ 1 & \omega + 1 \end{vmatrix} = 1(\omega + 1) - 1(\omega^2 + 1) = \omega + 1 - \omega^2 - 1 = \omega - \omega^2 \] ### Step 5: Substitute back into the determinant equation Now substituting these back into the determinant: \[ D = -\omega^2(\omega + 1) - \omega^2 - 1 - 2(\omega - \omega^2) \] This simplifies to: \[ D = -\omega^3 - \omega^2 - \omega^2 - 1 - 2\omega + 2\omega^2 \] Using \( \omega^3 = 1 \): \[ D = -1 - 2\omega^2 - 2\omega \] ### Step 6: Relate to \( 3k \) We know from the problem statement that: \[ D = 3k \] Thus, we can equate: \[ -1 - 2\omega^2 - 2\omega = 3k \] From here, we can solve for \( k \): \[ k = \frac{-1 - 2\omega^2 - 2\omega}{3} \] ### Step 7: Substitute the value of \( \omega \) Substituting \( \omega = \frac{i\sqrt{3} - 1}{2} \) into the equation will give us the final value of \( k \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 7|11 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos

Similar Questions

Explore conceptually related problems

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity, then ((1+i)^(2n)-(1-i)^(2n))/((1+omega^(4)-omega^(2))(1-omega^(4)+omega^(4)) is equal to

If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^n,omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

ARIHANT MATHS ENGLISH-COMPLEX NUMBERS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  2. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  3. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  6. If omega is a cube root of unity and (1+omega)^7=A+Bomega then find th...

    Text Solution

    |

  7. Let z be a complex number such that the imaginary part of z is nonz...

    Text Solution

    |

  8. If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the...

    Text Solution

    |

  9. If z is complex number of unit modulus and argument theta then arg ...

    Text Solution

    |

  10. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2+(y-y0)^2...

    Text Solution

    |

  11. Let w = (sqrt 3/2 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Furthe...

    Text Solution

    |

  12. Express in the form of complex number if z=i^(-39)

    Text Solution

    |

  13. Express in the form of complex number (1-i)^4

    Text Solution

    |

  14. If z is a complex number such that |z|geq2 , then the minimum value...

    Text Solution

    |

  15. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  16. Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2...

    Text Solution

    |

  17. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  18. A value of theta for which (2+3i sin theta)/(1-2i sintheta) purely ima...

    Text Solution

    |

  19. Let 0 ne a, 0 ne b in R. Suppose S={z in C, z=1/(a+ibt)t in R, t ne ...

    Text Solution

    |

  20. Let omega be a complex number such that 2omega+1=z where z=sqrt(-3). I...

    Text Solution

    |