Home
Class 12
MATHS
Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9...

Solve for x,
`|{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}|`=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation for \( x \): Given the determinant: \[ D = \begin{vmatrix} 4x & 6x + 2 & 8x + 1 \\ 6x + 2 & 9x + 3 & 12x \\ 8x + 1 & 12x & 16x + 2 \end{vmatrix} = 0 \] ### Step 1: Transform the determinant We will perform column operations to simplify the determinant. First, we will change the third column \( C_3 \) to \( C_3 - 2C_1 \): \[ C_3 \rightarrow C_3 - 2C_1 \] This gives us: \[ D = \begin{vmatrix} 4x & 6x + 2 & (8x + 1 - 2(4x)) \\ 6x + 2 & 9x + 3 & (12x - 2(6x + 2)) \\ 8x + 1 & 12x & (16x + 2 - 2(8x + 1)) \end{vmatrix} \] Calculating the new entries in \( C_3 \): - For the first row: \( 8x + 1 - 8x = 1 \) - For the second row: \( 12x - (12x + 4) = -4 \) - For the third row: \( 16x + 2 - (16x + 2) = 0 \) Thus, we have: \[ D = \begin{vmatrix} 4x & 6x + 2 & 1 \\ 6x + 2 & 9x + 3 & -4 \\ 8x + 1 & 12x & 0 \end{vmatrix} \] ### Step 2: Further simplify the determinant Next, we will perform another column operation: change \( C_2 \) to \( C_2 - 3C_1 \): \[ C_2 \rightarrow C_2 - 3C_1 \] This gives us: \[ D = \begin{vmatrix} 4x & (6x + 2 - 12x) & 1 \\ 6x + 2 & (9x + 3 - 18x - 6) & -4 \\ 8x + 1 & (12x - 24x) & 0 \end{vmatrix} \] Calculating the new entries in \( C_2 \): - For the first row: \( 6x + 2 - 12x = -6x + 2 \) - For the second row: \( 9x + 3 - 18x - 6 = -9x - 3 \) - For the third row: \( 12x - 24x = -12x \) Thus, we have: \[ D = \begin{vmatrix} 4x & -6x + 2 & 1 \\ 6x + 2 & -9x - 3 & -4 \\ 8x + 1 & -12x & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant Now, we can expand the determinant. Since the third column has a zero in the last row, we can expand along the third column: \[ D = 1 \cdot \begin{vmatrix} 6x + 2 & -9x - 3 \\ 8x + 1 & -12x \end{vmatrix} - (-4) \cdot \begin{vmatrix} 4x & -6x + 2 \\ 8x + 1 & -12x \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} 6x + 2 & -9x - 3 \\ 8x + 1 & -12x \end{vmatrix} = (6x + 2)(-12x) - (-9x - 3)(8x + 1) \] Calculating the second determinant: \[ \begin{vmatrix} 4x & -6x + 2 \\ 8x + 1 & -12x \end{vmatrix} = (4x)(-12x) - (-6x + 2)(8x + 1) \] ### Step 4: Set the determinant equal to zero After calculating both determinants, we will set \( D = 0 \) and solve for \( x \). ### Step 5: Solve for \( x \) After simplifying the equations, we will find \( x \) such that: \[ -97x - 11 = 0 \implies x = -\frac{11}{97} \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{-\frac{11}{97}} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Expansion of Determinant|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Single Option Correct Type Questions|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

value of |(2,3,4),(5,6,8),(6x,9x,12x)|

Let D(x)=|{:(x^2+4x-3, 2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-16x+1, 16x-6, 104):}|=alphax^3+betax^2 + gammax+delta then :

Solve for x |x-2 , 2x-3, 3x-4,x-4 ,2x-9, 3x-16 ,x-8, 2x-27, 3x-64|=0.

Solve for X : [(1,2,-3),(2,1,3)]-X=[(5,1,8),(-6,0,5)] .

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|

Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

Solve: |(x^2-8x+12)/(x^2-10 x+21)|=(-(x^2-8x+12))/(x^2-10 x+21)

Solve: |(x^2-8x+12)/(x^2-10 x+21)|=(-(x^2-8x+12))/(x^2-10 x+21)

Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .

Solve : x-(2x+8)/3=1/4(x-(2-x)/6)-3

ARIHANT MATHS ENGLISH-DETERMINANTS -Exercise (Questions Asked In Previous 13 Years Exam)
  1. Solve for x, |{:(4x,6x+2,8x+1),(6x+2,9x+3,12x),(8x+1,12x,16x+2):}|=0

    Text Solution

    |

  2. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  3. The value of |alpha| for which the system of equation alphax+y+z=alpha...

    Text Solution

    |

  4. if a(1),a(2),…….a(n),……. form a G.P. and a(1) gt 0 , for all I ge 1 ...

    Text Solution

    |

  5. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  6. Consider the system of equations x-2y+3z=-1 -x+y-2z=k x-3y+4z=1 ...

    Text Solution

    |

  7. Let a,b,c, be any real number. Suppose that there are real numbers x,y...

    Text Solution

    |

  8. Let a,b,c be such that b(a+c)ne 0. If |{:(,a,a+1,a-1),(,-b,b+1,b-1),(,...

    Text Solution

    |

  9. If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):...

    Text Solution

    |

  10. The number of values of k for which the linear equations 4x+ky+2...

    Text Solution

    |

  11. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  12. The number of values of k, for which the system of equations (k""+"...

    Text Solution

    |

  13. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  14. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  15. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  16. The system of linear equations x+lambday-z=0, lambdax-y-z=0, x+y-lam...

    Text Solution

    |

  17. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  18. Let alpha, lambda , mu in R.Consider the system of linear equations ...

    Text Solution

    |

  19. If S is the set of distinct values of 'b' for which the following ...

    Text Solution

    |