Home
Class 12
MATHS
Let S be the sum of all possible determi...

Let S be the sum of all possible determinants of order 2 having 0,1,2 and 3 as their elements,. Find the common root `alpha` of the equations `x^(2)+ax+[m+1]=0,`
`x^(2)+bx+[m+4]=0`
and `x^(2)-cx+[m+15]=0`
such that `alphagtS`wherea+b+c=0 and
`m=sum_(n to 00)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))`
and [.] denotes the greates integer function.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Expansion of Determinant|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

Evaluate S=sum_(r=0)^(n-1)(1)/(sqrt(4n^(2)-r^(2)))as n rarrinfty .

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then