Home
Class 12
MATHS
Let f(x)=|{:(secx,x^(2),x),(2sinx,x^(3),...

Let f(x)`=|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4))` is equal to

A

0

B

-1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the limit of the determinant as \( x \) approaches 0. Let's break down the steps: ### Step 1: Write the Determinant The determinant is given as: \[ f(x) = \begin{vmatrix} \sec x & x^2 & x \\ 2 \sin x & x^3 & 2x^2 \\ \tan 3x & x^2 & x \end{vmatrix} \] ### Step 2: Factor Out Common Terms We can factor out common terms from the columns and rows of the determinant. - From column 2 (C2), we can take out \( x^2 \). - From column 3 (C3), we can take out \( x \). - From row 2 (R2), we can take out \( 2x \). After factoring, we have: \[ f(x) = x^4 \begin{vmatrix} \sec x & 1 & 1 \\ 2 \sin x/x & x & 2 \\ \tan 3x/x & 1 & 1 \end{vmatrix} \] ### Step 3: Simplify the Determinant Now we need to evaluate the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^4} = \lim_{x \to 0} \begin{vmatrix} \sec x & 1 & 1 \\ 2 \frac{\sin x}{x} & 1 & 2 \\ \tan 3x/x & 1 & 1 \end{vmatrix} \] ### Step 4: Evaluate the Limit As \( x \) approaches 0: - \( \sec(0) = 1 \) - \( \frac{\sin x}{x} \to 1 \) - \( \tan(3x)/x \to 3 \) (using the limit property \( \tan(kx)/x \to k \) as \( x \to 0 \)) Substituting these values into the determinant, we get: \[ \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 1 \end{vmatrix} \] ### Step 5: Calculate the Determinant Now, we calculate the determinant: \[ = 1 \cdot (1 \cdot 1 - 2 \cdot 1) - 1 \cdot (2 \cdot 1 - 2 \cdot 3) + 1 \cdot (2 \cdot 1 - 1 \cdot 3) \] \[ = 1 \cdot (1 - 2) - 1 \cdot (2 - 6) + 1 \cdot (2 - 3) \] \[ = 1 \cdot (-1) - 1 \cdot (-4) + 1 \cdot (-1) \] \[ = -1 + 4 - 1 = 2 \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{f(x)}{x^4} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|23 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|13 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2x)/(tan3x)=?

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Lt_(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

Let f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|, then lim_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f(x))/x is equal to

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to