Home
Class 12
MATHS
Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax...

Let `|{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E` the value of 5A+4B+3C+2D+E is equal to

A

-16

B

-11

C

0

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem step by step, we will calculate the determinant of the given matrix and then compare it with the polynomial form to find the coefficients A, B, C, D, and E. ### Step 1: Write the Determinant We start with the determinant of the matrix: \[ \begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|23 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|11 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|13 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Let |(x,2,x),(x^2,x,6),(x,x,6)|=A x^4+B x^3+C x^2+D x+Edot Then the value of 5A+4B+3C+2D+E is equal to a. zero b. -16 c. 11 d. -11

Let |[x,2,x],[x^2,x,6],[x,x,6]|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal (a)0 (b) -16 (c) 16 (d) none of these

Let |x2xx^2x6xx6|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal 0 (b) -16 (c) 16 (d) none of these

Let a,b,c, d be the roots of x ^(4) -x ^(3)-x ^(2) -1=0. Also consider P (x) =x ^(6)-x ^(5) -x ^(3) -x ^(2) -x, then the value of p (a) +p(b) +p(c ) +p(d) is equal to :

If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| is equal to ax^4+bx^3+cx^2+dx+e , then the value of e is equal to

Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then the value of d is

If |{:(x^(2)-2x+3,7x+2,x+4),(2x+7,x^(2)-x+2,3x),(3,2x-1,x^(2)-4x+7):}|=ax^(6)+bx^(5)+cx^(4)+dx^(3)+ex^(2)+fx+g the value of g is

If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find the value of A and B.

If int(3x ^(3)-17)e^(2x)dx={Ax^(3)+Bx^(2)+Cx+D}e^(2x)+k then

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then